
011FIL~E CORI (~
Lfl
N

'41

Atk~ir

Wrigt-P~ersn Ar Foce aseOhi

*0 aoVo
u m.,

60 7 & h m M " 1 7

AFIT/GCS/ENG/88S-1

DESIGN OF A SYNTAX VALIDATION TOOL FOR
REQUIREMENTS ANALYSIS USING STRUCTURED

ANALYSIS AND DESIGN TECHNIQUE (SADT)

THESIS

Dong Hak Jung
Major, ROKAF

AFIT/GCS/ENG/88S-1

1

Approved for public released; distribution unlimited

AFIT/GCS/ENG/88S-1

DESIGN OF A SYNTAX VALIDATION TOOL FOR

REQUIREMENTS ANALYSIS USING STRUCTURED

ANALYSIS AND DESIGN TECHNIQUE (SADT)

THESIS

Presented to the Faculty of the School of Engineering

of the Air Force Institute of Technology QU-

Air University

In Partial Fulfillment of the

Requirements for the Degree of -ocesl --n For

Master of Science in Computer System NTIS GRA&I

DTIC TAB
Unannouncedi vs.tificatio

Dong Hak Jung, B.S. By if --------

Major, ROKAF Distribution/-
AvailabilitY Codes

Ava i1 and/or

September 1988 Dt Sc

Approved for public released; distribution unhmited

Preface

T1 is report documents my thesis effort to design and implement a valida-

tion tool which checks the syntax of the Structured Analysis and Design Technique

(SADT) method from a structured analysis diagram,

I would like to express my sinceppreciation to Dr. Gary B. Lamont, my

thesis advisor, for all his guidance and inspiration throughout this effort. I would also

like to thank my committee members, Dr. Thomas C. Hartrum and Capt. David W.

Fautheree, for their c,-nt,'ibution to this thesis. I would also like to thank Maj. Bill

E. Oswald and his family for encouraging me and for English reviews of this thesis.

I would also like to thank the U.S. and R.O.K. Governments for allowing me to have

this opportunity.

Finally, I would like to thank my wife, and ourm children, for

their understanding and moral support during ou- AFIT assignment.

Dong Hak Jung

-ii.

Table of Contents

Page

Preface......

Table of Contents.....

List of Figures. vii

List of Tables. viii

Abstract. ix

I. Introduction 1-1

Objective 1-1

Background 1-1

Software Life Cycle. 1-1

SADT. 1-5

Syntax-Directed Editor 1-8

Graphics Language Translation 1-9

Problem and Scope. 1-11

Assumptions. 1-11

Approach. 1-11

Sequence of Presentation. 1-12

11. Requirement Analysis. 2-1

Introduction 2-1

Existing Constraints. 2-1

Hardware Support. 2-1

iii

Page

Software Support 2-2

Human Interface Requirements. 2-2

Formalization Criteria of SADT 2-3

Functional Model for SADT Validation Tool. 2-4

Evaluation Criteria 2-6

Summary 2-7

Ill. Conceptual Design 3-1

Introduction. 3-1

Constraints 3-1

Hardware and Software 3-1

Human/Computer Interface Constraints. 3-1

System Structure 3-3

SADT Editor/Diagram Files 3-4

Translator/Translation Rules 3-4

Syntax Rules 3-8

Syntax Checker. 3-10

Summary. 3-12

IV. Detailed Design, Implementation, and Test. 4-1

Introduction 4-1

Detailed Design of Translator 4-1

Detailed Design of Syntax Checker 4-2

Knowledge Base 4-2

Inference Engine. 4-3

Implementation. 4-4

Language Issues 4-4

Interfaces. 4-5

iv

Page

Implementation of Syntax Checker. 4-5

Format of Predicate File. 4-6

Documentation Standard 4-6

Test 4-6

Summary 4-8

V. Conclusions and Recommendations. 5-1

Conclusions 5-i

Recommendations. 5-2

Summary 5-3

A. Summary of SADT Editor. A-1

Introduction. A-i

Implemented Graphic Features. A-i

Screen Layout A-i

L ~~Data Structure. A-3

Summary. A-7

B. Requirements Analysis Diagram. B-i

C. Source Code List c-1
Translator. c-i
Inference Engine- 14

Knowledge base C-28

D. User's Guide D-1

Descriptions. D-1

System Requirements D- 1

Operation on Sun Workstation. D-1

Operation on Z-248 Workstation D-2

V

Page

Example of Predicate File D-3

E. Programmer's Guide E-1

Bibliography BIB-1

Vita VITA-1

vi

List of Figures

Figure Page

1. 1. Conventional Software Life Cycle 1-2

1.2. Transformation System Paradigm 1-4

1.3. Prototyping Diagram. 1-4

1.4. Operational Specification Paradigm 1-5

1.5. SADT Digram,.. 1-7

2.1. Top Level of SADT Tool 2-4

2.2. Provide SADT Tool 2-5

2.3. Provide SADT Validator 2-6

3.1. Screen Layout. 3-2

3.2. Overall Structure of SADT Validator. 3-J,

4.1. Software Testing Steps 4-7

A.1. Implemented Graphic Syntax. A-2

A .2. Screen Layout of SADT Editor. A-4

A .3. SADT Editor Menus. A-5

A.4. Example Group of Lines A-6

A-5. Resulting Linked List. A-7

D-1. Example of Predicate File. D-4

D.2. Example of SADT Diagram D-5

E.l1. Makefile Format. E-2

vii

List of Tables

Table Page

3.1. Implemented Graphical Feature and their Predicates 3-6

3 2. Translation of Data Structure into Predicates 3-7

viii

AFIT/GCS/ENG/88S-1

Abstract

This thesis investigation presents the prototype development of a validation

tool for checking the syntax of Structured Analysis and Design Technique (SADT)

method from a structured analysis diagram. The tool provides the requirements

analyst and the designer with an environment for checking the SADT syntax of an

SADT diagram.

The tool is operated through the use of an SADT Editor which was developed

by Steven E. Johnson at the Air Forcc Institute of Technology (AFIT).

The validation tool was developed in three phases. During the first phase, the

formal definition of the SADT graphical language was derived using Predicate Logic

representation. During the second phase, the SADT Editor was analyzed and the

interface issues with the software were identified. Thus, the graphical features were

translated. During the third phase, the syntax rules were identified according to the

formal definition of the SADT methodology using Predicate Logic representation.

The new tool was implemented into a knowledge-based system to ease the

extension of the syntax rules, to add knowledge of the SADT graphical structure

and to add domain knowledge of an application system developed by the SADT

methodology. -

ix

DESIGN OF A SYNTAX VALIDATION TOOL FOR

REQUIREMENTS ANALYSIS USING STRUCTURED

ANALYSIS AND DESIGN TECHNIQUE (SADT)

I. Introduction

Objective

The objective of this thesis effort is to perform the prototype development

of a syntax validation tool for graphical diagrams using Structured Analysis and

Design Technique (SADT) (SADT is a trademark of SotTech, Inc). These diagrams

could be used in the requirement and design analysis phase of the software life cycle

(16:1-1). While editing a SADT diagram, the tool should be able to check whether

or not structured analysis diag-ams are valid for the SADT's syntax, produce error

messages, do error recovery, and perform editing suggestions. Thus, this tool must

have the knowledge of the SADT's syntax and an associated formal process for

transforming SADT's graphical representation.

Background

Software Life Cycle. To illustrate the software life cycle, the "waterfall model"

or "conventional life cycle model" has been proven convenient (3). Figure 1.1 shows

the conventional software life cycle. The life cycle is divided into five phases, which

are the requirement analysis phase, the design phase, the implementation phase, the

test phase, and the maintenance phase.

During the requirement analysis phase, analysts try to understand the user's

requirements and define the specifications to meet those requirements. User's spec-

ifications contain why the system is to be designed, what the system should do,

1-1

VVAUIII

DAILED~t

Figure 1.1. Conventional Software Life Cycle (1:3)

and what design constraints are to be considered. During this phase, the software

specifications should be determined for satisfying these requirements.

The design phase specifies how the system is to be implemented so that it

meets the software specifications derived from the requirement analysis. Prelimi-

nary design and detailed design are the two steps performed in the design phase.

The preliminary design is concerned with the transformation of the software spec-

ifications of the previous phase into specific design components. The components

may be further decomposed into sub-components as necessary. Thus, components

and sub-components are realized in terms of functional modules within a hierachical

~description or framework.

The detail design focuses on refinements to the architectural representation

that leads to detailed data structure and algorithmic representations for each com-

ponent.

1-2

. . . n. U D ==,innrDISIIGN

The implementation involves coding of each module using a formal computer

programming language.

During the test phase, each program module is tested in order to find and

correct the errors. Then, an integration test is performed to merge each program

module into a whole hardware/software system.

Finally, during the maintenance phase, the system is operated and modified as

necessary.

Some critics claim that the conventional software life- cycle model is not effec-

tive for the process of preparing detailed software specifications because it is difficult

to separate the "what" of specification from the "how" of design (1).

Alternative software development methods (or paradigms) have been suggested

for overcoming drawbacks of the conventional software life cycle model (2). The new

paradigms are "transformation systems", "prototyping", and "operational specifica-

tion".

The "transformation systems' paradigm is shown in Figure 1.2.

The "transformation systems" paradigm uses automated support to ap-
ply a sequence of correctness preserving transformations to a formal spec-
ification. The transformations reduce the high level constructs of the for-
mal specification into lower level constructs (such as data structures and
algorithms) which form a software system. Additionally, the sequence of
transformations is recorded. This allows maintenance to be performed
by simply modifying the specification and repeating the transformation
process guided by the previously recorded sequence of transformations
[2).

The "prototyping" paradigm is shown in Figure 1.3.

This paradigm uses the system requirements to construct a prototype of
the desired software system. The objective of the prototyping effort is
to clarify the characteristics and operation of the system by constructing
a version that can be exercised. The prototype then provides a vehicle

1-3

"OMAL
DEVELOPUENT*

RECORD

PERFORMRECORD THE SEOUIENCE
SYSTEM MAINTENANCE OF TRANSFORMATIONS

BY MDIFYNG TE 11AND DECISIONS

DEVEOP A/ -TRNFRM THE

REQUIREMENTS SPECIFICATION FORMAL CONCRETE SYSTEM DUEE

INCN LETEI SAMPLE TRANSFORMATIONS SSE

-CHANGING THE REPRESENTATIONSt

-SELECTING THE ALGORITHMS

AGAINST THE - USE AUTOMATED SYSTEM TO
REIRMNS APPLY THE TRANSFORMATIONS

REVISE THE - USE DEVELOPER IANO/OR EXPERT
SPECIFICATION SYSTEMI TO INTERACTIVELY
AS NECESSARY GUIDE THE CHOICE OF

TRANSFORMATIONS

Figure 1.2. Transformation System Paradigm (2:9)

uws

Figure 1.3. Prototyping Diagram (2:7)

1-4

OPEATINAL

SPICORCATION ~ rAION

Figure 1.4. Operational Specification Paradigm (2:8)

by which both the user and system designer can evaluate the develop-
ment of the system. Based on the evaluations, the prototype is refined

_' until a complete system requirements specification has been defined. At
~this point, development of the software could continue by: developing
~the prototype into an operational system, going to the design stage of
~the conventional life-cycle model, or using the transformation system

paradigm [2].

The "operational specification" paradigm is shown in Figure 1.4.

In this paradigm, an operational specification is used to generate a sys-
tem model that can be executed to examine the behavior or the system
(much like the "prototyping" paradigm). This approach acknowledges
the interweaving of the "what" and "how" considerations with the goal
of producing an operational specification that deals only with problem
oriented issues, and the operational specification is expressed in some lan-
guage that allows it to be executed to examine system behavior. Once the
operational specification has been completed, a transformation system is
used to obtain an actual software system [2].

SADT. Structured Analysis Design Technique (SADT) is SofTech's method-

ology for guiding requirement analysis and system design of the software life cycle

(14).

1-5

Originally introduced as a "system-blueprinting" method for document-
ing the architecture of large and complex systems, SADT had become
a full-scale methodology for coping with complexity through a team-
oriented, organized discipline of thought and action, accomplished by
concise, complete, and readable word and picture documentation 113:251.

Specifically, SADT provides techniques and methods for:

1. Thinking in a structured way about large and complex problems;

2. Communicating analysis and design results in clear, precise notations;

3. Controlling accuracy, completeness, and quality by procedures for review and

approval;

4. Documenting the system analysis and design history, decisions, and current

results;

5. Working as a team with effective division and coordination of effort; and

6. Managing development projects and assessing progress [16:1-1].

SADT provides "both techniques for performing systems analysis and design

and a process for applying these techniques which significantly increases the produc-

tivity of a team of analysts or designers" (16:1-1).

SADT provides a graphical technique which models a problem to be solved

into the box-and-arrow diagrams. In addition to boxes and arrows, each diagram is

described with some text for understanding. Therefore, an SADT model consists of

diagrams and text derived from a graphical language.

Since the graphic language consists of the notations for structured analysis,

the resulting diagrams are well-organized structurally and hierachically. SADT is

based upon a maxim that "everything worth saying about anything worth saying

something about must be expressed in six or fewer pieces" (14:26).

1-6

Control

Input Output

Mechanism

Figure 1.5. SADT Digram

The maxim implies a hierachical, top-down decomposition of the whole
into easy-to-grasp chunks, and in the process, the whole and all of its
subwholes and parts become more understandable because each whole
bounds the context within which its parts are to be understood [14:261.

The maxim being applied to the graphical notations of structured analysis,

each one of the six or fewer pieces is uniformly expressed in the form of the box,

whose four sides always mean input, control, output, and mechanism, as shown in

Figure 1.5.

Figure 1.5 indicates that the input is transformed into the output. The control

defines under what conditions the transformation occurs, and the mechanism defines

how the function is physically accomplished.

An SADT diagram consists of boxes and arrows with some text. Arrows,

which are input, control, and output, connect boxes together and represent interfaces

or interconnections between the boxes. The interfaces are indicated by branching

arrows that connect outputs to inputs or controls (and sometimes mechanisms). The

1-7

result of one transformation can control the transformation of some other input by

another box or can be further transformed by another box.

The SADT diagrams of a problem are the decomposition of a bounded subject.

Subjects are a box and the arrows that touch it. The diagram that contains the

boundary is called the "parent" diagram. The diagram that decomposes one box on

the parent diagram is called the "child" diagram.

Boxes are named and arrows are labeled. Boxes are numbered and arrow ends

may be tagged with ICOM (standing for INPUT, CONTROL, OUTPUT, MECHA-

NISM) codes. A number follows the letter I, C, 0, or M sequentially top to bottom

or left to right. ICOM codes provide the way to quickly verify whether or not the

external arrows of a diagram match the boundary arrows of the corresponding box

on the parent diagram. They also ensure consistent decomposition, since one must

account for all arrows entering and leaving a diagram in a low level diagram.

A collection of diagrams for a problem is called a "model". SADT provides

"the same graphic notation for both the things and the happenings aspects of any

subject" (16:19). Every model has two dual aspects- a thing aspect, called data

model and a happening aspect, called activity model.

In activity models, box names are verb phrases describing the activities, and

arrow labels are noun phrases describing the data involved in the activity. Thus,

the things are transformed by the happenings. Data models result from an opposite

approach: box names are noun phrases describing the data, and arrows labels are

verb phrases describing the activities involving the data.

Syntax-Directed Editor. Syntax-directed editors are editors which use the syn-

tax of the programming language while editing a program. While text editors treat

programs as text, syntax-directed editors use the underlying syntax of the program-

ming language. When syntax-directed editors are used for editing a program, the

program is built from the syntactic elements of the language. Most syntax-directed

1-8

editors use templates to build programs. Templates are invoked by the user. Tem-

plates are predefined patterns of code which consist of keywords, punctuation, and

nonterminals. The nonterminals are placeholders which the user fills in with tem-

plates or typed code.

Syntax-directed editors provide an environment which enhances the produc-

tivity of both beginning and experienced programmers (18). Programmers do not

need to remember the entire syntax of a programming language when using a syntax-

directed editor. Thus, programmers benefit by the typing time saved and the imme-

diate detection of syntax errors. Programs written using syntax-directed editors are

well-formatted, readable, and syntactically correct.

There are many syntax-directed editors and programming language environ-

ments. A well-known syntax-directed editor is the Cornell Program Synthesizer (19).

It is an interactive programming environment, designed primarily as a teaching tool.

It includes a syntax-directed editor, a compiler, and a debugger. The first language

for the Cornell Program Synthesizer was PL/CS, which is a subset of PL/1. Cur-

rently, it employs PASCAL. Comprehensive descriptions and a bibliography on the

syntax-directed editors and programming environments is provided in (9).

Graphics Language Translation. Since SADT is a graphical language, all infor-

mation on the SADT diagrams should be translated into well-defined descriptions.

Douglas T. Ross, who was the developer of the SADT, said,

Although it has yet to be formalized, SA as a modeling language is both
rigorous and complete. Even the combination of SADT with the RML
language of requirements modeling, described by Greenspan (5), is the
association of a particular formal semantics for an interpretation of an
SADT model's syntax rather than formalization of SA semantics itself,
as Greenspan acknowledges. Formalization of SA itself is very difficult
[13:281.

Requirement Modeling Language (RML) is a language which provides a way to

model "real-world" problems during the requirement analysis phase of the software

1-9

development (5). Greenspan proposed that requirement modeling be divided into

two steps:

1. Structured modeling (using boxes and arrows): Decide what are the relevant

concepts, decide on what to call them, organize into a "model" by concerning

graphically.

2. Semantic modeling: Create a generate object in RML for each concept named

in the SADT model; give object definitions in RML [5:77].

He used the SADT method as an intermediate step for modeling software

requirements into RML language. He has also shown that a derivation of an RML

model from an SADT description can be relatively straightforward. In addition,

RML is supported with a formal definition using a First-Order Logic (FOL) with

time (5:27-41).

PSL/PSA (Problem Statement Language / Analyzer) is another requirement

specification language (17). The language, PSL, provides object types, such as IN-

PUT, PROCESS, OUTPUT, SET, ENTITY, INTERFACE, etc., which together

with several relationship types allow statements. The analyzer, PSA, checks for

certain kinds of inconsistencies, such as invalid combination of object/relationship

types or the omission of mandatory relationships, and allows various reports to be

extracted (17).

Another effort to translate a graphics (dataflow) diagram into a function has

been attempted (12). This effort resulted in a process for translating dataflow com-

ponents into design schemas. For example, suppose a desigr schema has three inputs

from the domain A, B, and C and generates two outputs from the domain H and

I. Thus, the design schema can be represented as a function, f: (A*B*C) --+ (H'I).

This function can also be represented as a dataflow diagram with three inputs and

two outputs.

1-10

Problem and Scope

Early uses of SADT were performed with pen and paper, resulting in a lack of

standards and the possibility of inaccurate data. Although several graphic computer

support tools for SADT have been developed as AFIT thesis investigations (21) (8),

there are still the possibilities of diagram errors. Also, an automated interactive sys-

tem, AUTOIDEF (Automated ICAM (Integrated Computer-Aided Manufacturing)

Definition), supports a graphic tool for SADT (17). However, these tools do not

have the procedures for checking the syntax of SADT.

This thesis effort will attempt to solve these problems through the the develop-

ment of a validation tool for checking the consistency of SADT. Also, it will provide

error messages, error recovery, and editing suggestions.

Assumptions

Since a graphic tool for the SADT method is available at AFIT, it is reason-

able to use this tool for this thesis effort. The specific tool selected was developed

by Steven E. Johnson (8). Since he used the Sun 3 (Sun is a trademark of Sun

Microsystems Inc.) workstation for his SADT tool, the implementation of this tool

will be performed on the Sun 3 workstation using Berkely UNIX (UNIX is a trade-

mark of AT and T) Version 4.2, because there are several Sun 3 workstations in the

Information System Laboratory of AFIT. These workstations also provide a graphics

software SunView and the Sunwindow environment.

The user of the tool is assumed to be familiar with SADT.

Approach

First, the SADT language is analyzed with emphasis upon its syntax and

graphic features. Thus, the syntax and the graphic features are formalized in order to

have a precise meaning of "consistent" and "well-understood". The formalization for

SADT could be made using logic, algebraic, function, and other formal approaches.

1-11

Secondly, the formal definitions of SADT's syntax and graphic features are

transformed into formal computer language forms. Several computer languages such

as Prolog, Lisp, Ada, etc. could be useful for this purpose. The resulting forms will

become a data base for validating SADT diagrams.

Thirdly, the control procedure should be developed for checking SADT dia-

grams for validity in relationship to a specified data base.

From the above discussion, an expert system could be used for the implemen-

tation of this thesis investigation. The data base derived from SADT's syntax and

graphic features becomes the knowledge base for the expert system and the control

procedure becomes the inference engine of the expert system. This expert system

can be extended with SADT's semantic and domain knowledge of the application

systems using SADT methodology.

Also, the whole system will be operated interactively for syntax checking, pro-

ducing error messages, error recovery, and editing suggestions.

Sequence of Presentation

This thesis consists of five chapters. The requirements of the formal definition

of SADT and the syntax validation tool are defined in Chapter II. Based upon the

requirement analysis, the SADT graphical structures are formalized, and the tool

is designed in Chapter III. Chapter IV presents the selection of a formal computer

language depending upon the formalization of SADT for coding, and the tool is

implemented and tested. In Chapter V, the conclusions and the recommendations

are discussed for future investigations.

1-12

II. Requirement Analysis

Introduction

This chapter presents the requirements for the SADT validation tool. The

issues to be considered are existing constraints related to this tool, hardware and

software support, human interface, formalization criteria, the functional model of

this tool, and evaluation criteria.

Existing Constraints

The current computer graphic tool for SADT available at AFIT was developed

by Steven E. Johnson (8). This tool provides an interactive graphics editor for SADT

diagrams. A summary of his tool is presented in Appendix A. The tool provides the

means to generate data dictionary information (8:3-2). However, the tool does not

provide the capability to check the SADT's syntax in any SADT diagrams. Thus,

the new tool to be developed in this investigation should interface with Johnson's

tool by providing the capability to check the SADT's syntax. Also, the new tool

must be compatible and satisfy all requirements of the previous SADT tool (8).

Hardware Support

Since this tool must be integrated into AFIT computing environment, hard-

ware restrictions imposed by that environment must be considered when implement-

ing the new SADT tool. The AFIT's computing environment provides two central

computers, which are the VAX 11/785 (VAX is a trademark of Digital Equipment

Corporation Inc.), and several stand-alone workstations. The workstations, Z-100

and Z-248 Zenith microcomputers, access the central computers through the use of

the AFITNET. An Ethernet communication package in the AFITNET also allows

for remote login on the SUN workstations directly to the central computers.

2-1

Johnson's tool was developed using the SUN workstation. Thus, it is desirable

to develop the new SADT tool on the SUN workstation because many portions of

Johnson's tool can be reused without modifications.

Software Support

Software support needed in the development of this tool is not as simple. After

formalization of the SADT's syntax, a decision must be made concerning which

computer language can be used to write a formal definition of the SADT's syntax

properly. The cumputer language selected should interface with Johnson's tool. His

tool was written into C language, and uses graphics software package called SunView

and the Sunwindow window environment (8). Thus, this computer language must be

able to interface with the C language and the graphics software SunView. Minimal

execution time is also a desired feature.

Human Interface Requirements

A computer system's effectiveness is directly related to how well the system

was developed so that users can use it easily. James. W. Urscheler, in his master's

thesis Design of a Requirement Analysis Tool Integrated with a Data Dictionary in

a Distributed Software Development (21), presented five key psychological factors to

be considered for design of an effective system. The five key factors are:

1. Keep the user motivated - do not frustrate or bore him.

2. Break the lengthy input process into parts to permit the user to achieve "psy-

chological closure". This provides positive feed back to the user through a

feeling of accomplishment and success.

3. Minimize the memorization required by the user.

2-2

4. Provide visually pleasing displays on the screen. This includes minimizing the

scrolling and other distracting movements of text, the highlighting of instruc-

tions to the user, and making effective use of margins and white space.

5. Keep response time to a minimum. Display status messages to keep the user

constantly informed of what is happening inside the machine [21:21].

In addition to these factors, error recovery guidelines and user prompts should

be provided on screen.

Each of these human interface requirements should be addressed during the

design and the implementation phase of the tool development.

Formalization Criteria of SADT

From the previous chapter, the formalization of SADT was necessary to check

the errors in the SADT diagrams. Formalization of SADT should support the fol-

lowing requirements:

1. Formal definition must contain the syntax information in any SADT diagram

and be described syntactically.

2. Formal definition must provide the means to determine syntax errors in any

SADT diagram.

3. Formal definition should provide a domain where the definition of "consistency"

can be given.

4. Formal definition should serve as the final arbiter in cases where there is dis-

agreement concerning the exact meaning of the representation.

5. Formal definition should be able to be implemented in a computer system.

2-3

THOR: Ju nATE :7-1-W 8READER I
PROJECT: s Validator IREV: 1.U 1ATE I I

user input JProvide 00 definition

SA TO01facir page text
SA Toolm _user file$

7 CRT info

,NOO: ITTLE. Provide SA Tool ER: c-1

Figure 2.1. Top Level of SADT Tool

Functional Model for SADT Validation Tool

This section presents a functional model which defines and describes the tool's

functional requirements discussed in the previous sections. The following figures and

discussions display and explain the SADT diagrams associated with the higher levels

of the functional model for the SADT validation tool.

Figure 2.1 displays the top level of the tool's functional model. This diagram

indicates the overall requirements of the SADT tool. The "Provide SADT Tool"

operation is the process which creates and edits an SADT diagram and its data

dictionary information from tool user. Also, facing page text for the data dictionary

is generated (8). In addition, the operation contains the process which checks the

SADT's syntax of the SADT diagram and produces the syntax error-free SADT

2-4

TORc: y vIATE:7-1- IREADER I
CT: SA Validator .K:1.8 JDAYE I I

(eurer mnterface

memr ir t 0 O definition
TTE Provide ,, Toole R: C.&

ur fla -SA Editor iA lor C

2 Provi DTl
- 4 valitk error sage

parent dtarm_ .r

NE:A ITTLE: Provide SA Tool IR: C-2

Figure 2.2. Provide SADT Tool

diagram.

Figure 2.2 displays the initial decomposition of the top levels of the functional

model. This decomposition indicates the two primary functions or components of

the SADT tool. The "Provide SADT Editor" operation is the process which edits

and produces an SADT diagram and its data dictionary information, and facing

paging text. This operation has been developed by Johnson (8). The "Provide

SADT Validator" operation is the process which checks the syntax errors of the

SADT diagram produced from the "Provide SADT Editor" operation and produces

error messages as necessary.

Figure 2.3 shows the decomposition of the "Provide SADT Validator" opera-

tion into its component functions. The "Translate Diagram" operation is the process

2-5

THOR: JugOIATE:7-1 ee READERI I I
CT: SA Valdtor |_REV 1.9 JOVE I I I

I1'LE: PXCT :du VA Vadldaror R: C-S

Flgct uei2m prP ion rulesC¢1

SA d a rom -iransl- aiSA rul

The Chek Snta" oeraionis he poces wichcheks he ADTsyntaxusn

I1-]to pred ts()
pa rent darJOar
2

-I1

Syntax y rrd o

ofteetw prtin r peetdnApni B.ng =0E :al TLE: Provi SA Validtor R: C-3

Figure 2.3. Provide SADT Validator

which translates an SADT diagram into formalized forms using the translation rules.

The "Check Syntax" operation is the process which checks the SADT syntax using

the syntax rules and produces error messages as necessary. Further decompositions

of these two operations are presented in Appendix B.

Evaluation Criteria

In order to measure the success of the SADT vahdation tool in meeting its

requirements, a set of evaluation criteria must be established. Several parameters

can be used to measure to success of the tool.

The most important parameter measured is how accurately the tool checks

the SADT's syntax error, and provides error messages and editing suggestions. The

2-6

other parameters to be considered are the average time spent to learn the tool, user

friendliness, and the system responsiveness.

Summary

This syntax validation tool is conceived to support the requirement analysis

phase of the software life cycle. Since this tool should extend Johnson's tool, this

tool should satisfy all capabilities of his tool.

In order to check the SADT's syntax in an SADT diagram, all SADT's syntax

and graphic features should be precisely defined during the formalization process.

These requirements were presented in the formalization criteria section.

In addition, this tool should provide error messages, error recovery functions,

and editing suggestions. These because this tool is to interface with Johnson's tool.

Thus, the Sun workstation and the graphics software SunView are needed for the

development effort.

2-7

III. Conceptual Design

Introduction

In this chapter, the design of the SADT validation tool is described and justi-

fied. The description begins with consideration of several constraints discussed in the

previous chapter. Then, the overall functional system design is introduced. Also,

the main functions of the SADT validation tool, translating and syntax checking

process are presented. The SADT validation tool is called the SADT Validator and

Johnson's SADT graphic editor is called the SADT Editor.

Constraints

Hardware and Software. Since the SADT Validator should interface with the

SADT Editor, the hardware and the software to be used are already chosen. Thus,

the Sun 3 workstation and the graphic software SunView are required for developing

this SADT Validator. Also, since the SADT Editor was implemented using the C

language, a decision was made to proceed using the C language for the translating

process. This choice was very reasonable because many portions of the SADT Editor

could be directly reused without modifications. Also, the software needed in the de-

velopment of the syntax checking process could easily interface with the C language.

A detailed discussion of this process is presented in Chapter IV.

Human/Computer Interface Constraints. As discussed in the previous chap-

ter, an acceptable human/computer interface should be considered in the design

phase. Especially, the design decision about the window manipulation should be

addressed. Screen layout of the SADT Editor should be slightly modified adding a

new menu item for the validating function of the SADT Validator. Figure 3.1 shows

the modified screen layout for the SADT Validator.

3-1

AUTHR: LW- Y[KEA

Figure 3.1. Screen Layout

3-2

There are five windows on the screen: the Input Window, the Message Window,

the Selection Window, the Diagram Window, and the Data Dictionary/Syntax Error

Message Window in a vertical order.

The functions of the Input Window, the Message Window, and the Diagram

Window are the same as in the SADT Editor'. The third window, the Selection

Window, is used for selecting the menu which users desire to operate. There are

six ovals on the Selection Window: RECALL DGM, EDIT DD, EDIT FPT, EDIT

FUNC, SAVE DGM, and CHECK SYNTAX. The RECALL DGM oval is used to

read an existing diagram file. The EDIT DGM oval is used to create and edit a

diagram. The EDIT DD oval is used to create and edit data dictionary information.

The EDIT FPT oval is used to edit facing page text of a diagram. The EDIT MISC

oval is used for miscellaneous functions such as, making a dump file for a diagram,

exiting the SADT TOOL, etc.. The SAVE DGM is used to save the current diagram.

Finally, the CHECK SYNTAX oval is used to check the SADT syntax.

The Data Dictionary/Syntax Error Message Window is used for two functions.

One function is to enter the data dictionary information which cannot be accessed

from the diagram. The other function is to display syntax errors of the diagram.

The detailed description of the SADT Editor's screen layout is found in Appendix

A.

System Structure

The overall system structure of the SADT Validator is based upon the com-

ponents identified in the requirements discussed in the previous chapter. Figure 3.2

shows the overall system structure of the SADT Validator.

This system structure is directly produced from the SADT diagrams for the

SADT Validator (see Figure 2.2 and Figure 2.3). There are six components in

Figure 3.2: the SADT Editor, the Translator, the Syntax Checker, the D;--ram files,

the Translation Rules, and the Syntax Rules. This section examines each of these

3-3

error message

user inpu I SADT diagrm: Translator predicates _ Synatx

Editor Checker

Figure 3.2. Overall Structure of SADT Validator

components based upon their functions in the system as well as their relationships

to produce the overall system structure.

SADT Editor/Diagram Files. The SADT Editor was developed by Steven E,

Johnson (8). The SADT diagram and its diagram files produced by the SADT Editor

are used for validating the syntax of the SADT diagram. There are two diagram files

for the SADT diagram. One file contains the graphical information, and the other

file contains the data dictionary information. A summary of the discussion about

the SADT Editor is found in Appendix A.

Translator/Thanslation Rules. The Translator is used to translate the SADT

graphical features into formal language descriptions. Several ways to formalize the

graphical language have been discussed in Chapter I. Also, requirements for the for-

malization criteria have been discussed in Chapter II. In this effort, Predicate Logic

3-4

is chosen for translating an arbitrary SADT diagram into a set of formulae. This

provides proof-theory as a computational definition of notions such as "consistency"

and "answer to question". Thus, such a definition will play a main role in the im-

plementation of the SADT Validator. Another reason is that Predicate Logic is easy

to understand and represent.

In order to translate an arbitrary SADT diagram into Predicate Logic, the

SADT graphical features such as box, arrow, etc. are translated into the Predicates.

Some graphical features are mapped into predicates with a one-to- one relationship

and some are mapped into the predicates with a many-to-one relationship. Figure

3.3 shows the relationship for mapping the SADT graphical features into the selected

predicates.

The graphical features shown in Table 3.1 are the items implemented in the

SADT Editor (8:A-5). Since the SADT Validator interfaces with the SADT Editor,

the graphical features to be used in the SADT Validator are the same as those of

SADT Editor. The graphical feature Box is translated into the predicate BOX(x),

which means: x is a BOX. In the case of the ARROW, it is translated into the predi-

cate ARROW(x), which means: x is a ARROW. In the case of INPUT, CONTROL,

OUTPUT, and MECHANISM, the graphical features are the attributes of the in-

terface for the arrows connected in a BOX. Therefore, these items are translated

into the predicate ATTRIBUTE(x,yz), which means: z is an attribute of an arrow

y for a box x. Thus, the attribute field has one of the values: INPUT, CONTROL,

OUTPUT, or MECHANISM. The ACTIVITY NAME is translated into the predi-

cate NAME(x,y), which means : y is a name of box x. The LABELS is translated

into the predicate LABEL(x,y), which means: y is a label of an arrow x. In the

c.ase of BRANCH, JOIN, BOUNDARY ARROW, 2-WAY ARROW, TUNNEL AR-

ROW, and TO/FROM ALL, these graphical items are translated into the predicate

ARROW(x) because each of these is characterized into an arrow. Also, the FOOT-

NOTE and the SQUIGGLE zre translated into the predicate LABEL(x,y) because

3-5

Table 3.1. Implemented Graphical Feature and their Predicates

Ross's Article Johnson's Term Predicate

Line Number I ___I
1 BOX BOX(x)
2 ARROW ARROW(x)
3 INPUT ATTRIBUTE(x,yz)
3 OUTPUT _

4 CONTROL
5 MECHANISM
6 ACTIVITY NAME NAME(x,y)
7 LABELS LABEL(x,y)
12 BRANCH ARROW(x)
13 JOIN "
18 BOUNDARY ARROW "

22 2-WAY ARROW "
24 TUNNEL ARROW "
25 TO/FROM ALL
27 FOOTNOTE LABEL(x,y)
29 SQUIGGLE "
30 C-NUMBER -
31 BOX NUMBER NUMBER
32 MODEL NAME
33 ICOM CODE ICOM(x,y)
37 FACING PAGE TEXT

each of these is characterized into a label of an arrow. The BOX NUMBER is trans-

lated into NUMBER(x,y) which means: y is a number of a box. Finally, the ICOM

CODE is translated into the predicate ICOM(x,y) which means: y is a ICOM code

of a arrow x.

Since the SADT Validator interfaces with the SADT Editor, it is also needed

to map the data structures of the SADT Editor into the p:edicates. The discussion

of the data structures of the SADT Editor are found in Appendix A. Some data

structures are mapped into the predicates with one-to- one relationships, and other

structures are mapped into the predicates with many-to-one relationships. Table

3-6

Table 3.2. Translation of Data Structure into Predicates

TERM DA STRUCTURE PREDICATES RELATIONSHIP
NAME j FIELD

BOX box struct-type BOX one-to-one
ARROW line struct-type ARROW one-to-one
INPUT box struct-type ATTRIBUTE many-to-one

location
line struct-type

location
attribute

OUTPUT
CONTROL "_"_"__
MECHANISM "_" "_ _

ACTIVITY box struct-type NAME one-to-one
NAME name
LABEL line struct-type ARROW one-to-one

label
BRANCH line struct-type ARROW one-to-one

location
attribute

JOIN
BOUNDARY
ARROW
2-WAY
ARROW
TUNNEL
ARROW
TO/FROM
ALL
FOOTNOTE foot- struct-type LABEL many-to-one

note location
label

line struct-type
location

SQUIGGLE squi-
ggle
line

BOX box struct-type NUMBER one-to-one
NUMBER number
ICOM line struct-type ICOM one-to-one
CODE location

3-7

3.2 shows a list of the mapping of the data structures into the predicate with these

relationships.

For example, both box and line structures are needed to map the graphic

feature INPUT into the predicate ATTRIBUTE(x,yz). By comparing the location

of the box to the location of the line, a decision can be made whether the box

contains the line or not. If the line is contained in the box, it can be decided what

the attribute of the line is for the box by checking the starting and the ending

characteristics of the line. The attribute is one of the values: INPUT, CONTROL,

OUTPUT, or MECHANISM.

These mapping relationships between the graphical features (or data struc-

tures) and the predicates result in a formation of translation rules. Therefore, an

arbitrary SADT diagram can be represented into the formalized forms using the

above Predicates through the translation rules.

Syntax Rules. This section presents a list of SADT syntax rules and their

representation using the Predicates. It is difficult to define the SADT itself formally,

as Ross acknowledged (13:28), because the SA graphical language includes domain

related semantics. Thus, the syntax rules implemented in this effort are not complete.

However, consistency should be provided among the rules. This work must be a

knowledge engineering process. The knowledge of the SADT syntax is represented

using the predicates in this thesis effort. A list of SADT syntax rules developed in

this thesis effort and their Predicate Logic representations are:

1. Each box must have a name.

Vx, 3y[BOX(x) -, NAME(x,y)]

2. Each box must have a number.

Vx, 3y[BOX(x) -- NUMBER(x,y)]

3. Each arrow must have a label.

3-8

Vx, 3y[ARROW(x) -# LABEL(z, y)]

4. Each box must have at least one control arrow.

Vx, 3y[BOX(z) --

ARROW(y) A ATTRIBUTE(y, x,' CONTROL')]

5. Each box must have at least one output arrow.

Vx, 3y[BOX(x)

ARROW(y) A ATTRIBUTE(y, x,' OUTPUT')]

6. Each diagram has no more than six boxes.

Vx, 3y[BOX(x) A NUMBER(x, y) --

GREATERTHAN(y, 0) A LESSTHAN(y, 7)]

7. Every box in a diagram must be connected to at least one other box unless

there is only one box.

8. External arrows of a iagram should be matched in number and name with

the arrows that touch the parent box.

Rule 6 contains two new predicates, which are GREATERTHAN(x,y) and

LESSTHAN(x,y). The GREATERTHAN(x,y) predicate implies that x is greater

than y, and The LESSTHAN(x,y) predicate implies that x is less than y.

First seven rules are derived with emphasis upon the box and the arrow rela-

tionships. The graphical features which present the arrow information such as join,

branch, bundle, spread, etc., are not defined in this thesis effort due to the pipeline

feature of the SA language. Rule 8 implies the parent and the child relationships.

Rule 8 is also not defined because it needs to refer to the two diagrams.

Thus, these syntax rules become a knowledge base of the SADT Validator.

The next section discusses the syntax checking process.

3-9

Syntax Checker. The main purpose of the syntax checker is to check whether

or not an SADT diagram is valid against the SADT syntax rules. When any er-

ror is found on the SADT diagram, the appropriate messages are provided in this

process. The syntax checker is an inference engine of the knowledge-based system

using Predicate Logic representation. Thus, it is needed to discuss how the inference

engine works in the knowledge-based system using Predicate Logic representation.

As seen in the previous section, the syntax rules are complex. Thus, these

rules can be converted into much simpler forms using the CNF (Conjunctive Normal

Form) notation. This conversion process is performed by the following sequence of

steps:

1. Eliminate the implication -- , using the fact that a --* b is equivalent to -a V

b.

2. Reduce the scope of -', using the fact that (~ p) = p, deMorgran's laws

and the standard correspondences between quantifiers [- VxP(x) = x

3P(x)]and[, 3xP(x) =x - VP(x)].

3. Standardize variables so that each quantifier binds a unique variables. For

example, the formula x P(x) V x Q(x) would be converted to x P(x) V y Q(y).

4. Move all quantifiers to the left of the formula.

5. Eliminate existential quantifiers 3 with appropriate substitution of Skolem con-

stants and function.

6. Drop the universal quantifiers V.

7. Convert to conjuinctive normal forms.

8. Eliminate conjunctions so that conjunctive normal forms can be formed into a

list of clauses.

9. Rename variables so all clauses are unique [11:151-1521.

3-10

After applying this entire procedure to a set of Predicate Logic representations

from an SADT diagram and syntax rules, a set of clauses will be produced, each

of which is a disjunction of literals. These clauses can now be exploited by the

resolution procedure to generate the output messages by the syntax checker.

The resolution procedure is an iterative process, at each step where two
clauses, called the parent clauses, are compared. The result yields a
new clause called resolvent. This resolution procedure needs a matching
procedure that compares two clauses and discovers whether there exists a
set of substitutions that makes them identical. This matching procedure
is called the unification algorithm [11:157].

The general resolution procedure for Predicate Logic is performed by the fol-

lowing steps in sequence:

1. Convert the SADT syntax rules represented by Predicate Logic into CNF (Con-

junctive Normal Form). The result yields a set of clause forms.

2. Negate an SADT diagram represented by Predicate Logic to be proved, and

convert the result to clause form. Add it to the set of clauses obtained in 1.

3. Repeat until either a contradiction is found, no progress can be made, or a

predetermined amount of effort has been expended:

(a) Select two clauses. Call these the parent clauses.

(b) Resolve them together. The resolvent will be the disjunctive of all of

the literals of both of the parent clauses with appropriate substitutions

performed.

(c) If the resolvent is the empty clause, then a contraction has been found.

If it is not, then add it to the set of clauses available to the procedure
[11:158].

However, during the resolution procedure, if no contradiction exists, it is pos-

sible the resolution procedure will never terminate. This is a completeness problem.

A way of detecting that no contradiction exists is required.

3-11

But, from a computational point of view, completeness is not an impor-
tant question. Instead, we are much more interested in whether good
enough heuristics can be discovered so that a proof can be found in the
limited amount time that is available [11:1681.

Also, when this general procedure is applied to the syntax checker, the re-

sult yields either true or false. In other words, if there is any error on the SADT

diagram, then the resolution procedure yields false. However, in order to provide

good user interface, it is necessary to explain why the error is produced. Detailed

implementation about the explanation facility is presented in Chapter IV.

Summary

This chapter presented a conceptual design decisions for the SADT Valida-

tor. The requirement analysis dictated design of two main functions, which were

the translator and the syntax checker. Thus, design decisions for these functions

were discussed. Also, Predicate Logic was chosen to represent the SADT graphical

features and the syntax rules. The interface of this representation with the SADT

Editor was also addressed. The next chapter presents detailed design, implementa-

tion, and test of the SADT Validator.

3-12

IV. Detailed Design, Implementation, and Test

Introduction

This chapter presents a detailed design of the components specified in the

conceptual design chapter. The major components identified were the translator and

the syntax checker. Within the syntax checker, two sub- components were identified.

The first was an inference engine or control procedure. The second component was

the knowledge base which consists of the syntax rules and the domain information of

the SA graphical features. Also, this chapter presents the implementation issues of

the SADT Validator, and reviews the testing approach used during the development.

Detailed Design of Translator

The translator is used to translate an SADT diagram into the Predicate Logic

forms. The mapping relationships between the SA graphical features and their pred-

icates were presented in the conceptual design chapter.

The data structure of the translator is designed with emphasis upon the box

because the box of an SADT diagram plays the most important role in the presenta-

tion of the activity models. The box structure consists of three fields: box name, box

number, and connecting arrows. Each arrow in the box structure consists of three

fields: arrow name, attribute, and ICOM code. The attribute of the arrow identifies

one of the following values: input, control, output, or mechanism. Thus, each box

in an SADT diagram has one box structure.

A discussion is necessary to describe the process through which the data struc-

ture can be obtained from an SADT diagram. This issue needs some clarification

regarding the box structure and the data structures of the SADT Editor. The data

structures of the SADT Editor are discussed in Appendix A.

4-1

The box name and number of the box structure can be directly matched with

their fields in the box structure of the SADT Editor. However, connecting arrows

are not simple. By comparing the location of the box to the location of the line from

the box and the line structure of the SADT Editor, a decision can be made whether

or not the box contains the line. If the line is contained in the box, the arrow name

and the ICOM code can be directly obtained from the line structure. Also, it can be

determined what the attribute of the line is by checking the starting and the ending

attributes of the line. The attribute of the arrow must be one of the following values:

input, control, output, or mechanism.

Detailed Design of Syntax Checker

The syntax checker is used to check the syntax of the SA graphical features

for an SADT diagram, and to produce the appropriate result message. Within the

syntax checker, two sub-components were identified: the knowledge base and the

inference engine. The knowledge base consists of the syntax rules and the facts.

The facts are the Predicate Logic forms produced from an SADT diagram by the

translator.

Knowledge Base. The knowledge base for the syntax checker consists of two

sub-components. The first includes the syntax rules of the SADT method. The

second consists of the facts, which are the predicate forms produced from an SADT

diagram.

If-then rules are chosen for the representation of the syntax rules because these

usually turn out to be a natural form of expressing knowledge. Also, if-then rules

have the following additional desirable features:

1. Modularity: each rule defines a small, relatively independent piece of knowl-

edge.

4-2

2. Incrementability: new rules can be added to the knowledge base relatively

independently of other rules.

3. Modifiability (as a consequence of modularity): old rules can be changed rela-

tively independently of other rules.

4. Support system's transparency [4:316-317].

For example, the syntax rule, which is "each box must have a number", is

represented by the following if-then rule:

e Rule: if there is a box

0 and the box does not have a number

* then there is a number error on the box.

If-then rules for the syntax rules are presented in Appendix D.

The "if" part of the if-then rule is the condition and the "then" part is the

conclusion. Thus, the facts should be matched with the condition part. Also, the

conclusion part presents either the new fact or an explanation of an error condition.

In addition, the knowledge base includes the relation "askable" which defines those

things that can be asked of the user.

Inference Engine. An inference engine determines the appropriate use of the

knowledge in the knowledge base. This inference engine includes an interface between

the user and the system. Thus, the inference engine provides the user with an insight

into the problem-solving process carried out by the inference engine. The reasoning

process of the inference engine is performed according to the following principles:

To find an answer Answ to a question Q use one of the following:

1. If Q is found as a fact in the knowledge base, then Answ is 'Q' is true.

4-3

2. If there is a rule in the knowledge base of the form 'if Condition then Q', then

explore Condition in order to find answer Answ.

3. If Q is an 'askable' question, then ask the user about Q.

4. If Q is of the form Q1 and Q2, then explore Q1 and now: if Q1 is false, then

Answ is 'Q is false', else explore Q2 and appropriately combine answers to both

Q1 and Q2 into Answ.

5. If Q is of the form Q1 or Q2, then explore Q1 and now: if Q1 is true, then Answ

is 'Q is true', or alternatively explore Q2 and appropriately combine answers

to both Q1 and Q2 into Answ [4:326-327].

Also, this inference engine should include the process to trace how the conclu-

sion was reached for the user's understanding.

Implementation

Language Issues. For the translator, a decision was made to proceed using C

because the SADT Editor was implemented using C. Thus, many portions of the

SADT Editor could be reused without modifications.

During the implementation of the syntax checker, numerous problems were en-

countered while using Xenologic Prolog on the Sun workstation. For example, when

the Xenologic Prolog was used abnormally, the Sun workstation became inoperative.

Thus, the user was forced to re-boot the system. Another example was that, when

the program using this language had many syntax errors, the Sun workstation be-

came inoperative. Thus, Xenologic Prolog was not proper for this effort. However,
the MS-DOS Prolog-1 Version 2.2, which was developed by Expert System Ltd., was

available for the Z-248 workstation. Therefore, the syntax checker was implemented

on the Z-248 workstations.

4-4

Interfaces. Since Prolog-1 was chosen for the implementation of the syntax

checker, the predicate forms, which are the output of the translator, should be stored

in a file. A list of rules is presented in Appendix C and a list of facts is presented

in Appendix D. As a result, the file for the predicate forms became an input file for

the syntax checker. Thus, the file included the facts of the knowledge base for the

syntax cheder.

Implementation of Syntax Checker. Two sub-components were identified within

the syntax checker in the design section. An inference engine, called BC3, which was

a shell for backward-chaining expert system, was available. Thus, BC3 was used for

the inference engine of the syntax checker.

In order to use BC3 as the inference engine for the syntax checker, each item

of the facts was represented by a triple, a three-element list of the form: [Object,

Attribute, Value]. In addition, an associated knowledge base supplies the following

data:

1. A goal statement, in the form of a list of triples to be solved in sequence. The

solved triples are printed.

2. A collection of if-then rules for triples.

3. A collection of fact triples.

4. A collection of 'askable' triples, indicating the forms of triples whose values

may be obtained from the user.

5. A collection of 'keep' triples, indicating the form of the triples not to be erased

from working memory at the beginning of a new session.

When each syntax rule is applied to the facts, a message is produced by a goal

statement. Also, each syntax rule is represented using the if-then rule. In addition,

each of the predicate forms is represented into the fact using a three- element list of

4-5

I- I I -- I I Ii I _ M R ,

form: [Object, Attribute, Value]. The knowledge base of the syntax checker has one

'askable' triple, which is a box name to be checked.

Format of Predicate File. This sub-section presents the format of the predicate

file. The file includes the predicate forms of an SADT diagram produced by the

translator. Since each item of the file is used as the fact of the knowledge base for

the syntax checker, it should be represented using a three-element list of the form:

[Object, Attribute, Value]. An example of the contents of the file is presented in

Appendix D.

Documentation Standard

Internal documentation of the code follows that prescribes in the AFIT/ENG

Software Development Documentation Guidelines and Standards. Each program file

begins with the standard file header (7:38) and each module also begins with the

standard header (7:40). In addition, C and Prolog-1 language comments are provided

in the code to amplify and clarify each section of the code.

Test

The testing approach used in developing the SADT Validator occurs in four

phases. These phases are unit testing, integration testing, validation testing, and

system testing (10:502). These phases are shown in Figure 4.1.

Unit testing examines a module's interface, data structure integrity, boundary

conditions, and error handling (10:503-504). Each of these areas is tested using

both test data and normal usage of the modules. Because of the extensive data

passing between modules, the module's ability to maintain a structure's integrity is

emphasized.

Integration testing focuses on uncovering interface errors(10:507). A bottom-

up incremental integration test is used (10:508). This method was selected because

4-6

Fiue .. Sotes TesinfSepw(0:03

translationtio andeheuyntxerlenase

the SADT ~~~~~~~~~~~~ValidatrfnserronteS Tdigacossnlysxted .

Systlem tenis conertithovealssenss suchwas otaren

harwae optbltaduullsnovdfeet test gop1:1)

i4 -

Syste

-- . I Teste

Moue U i ur 4.1. Sotae sstems(0:53

trnsatonan tToyoatru ed Opeatina

it wok expecedigueto 4.10:oftwar Teing tethdps (10:503) kwhthr r

the SADT Validator finds errors on the SADT diagram consistently as expected.

System testing is concerned with overall system issv~es, such as software and

hardware compatibility, and usually involves different test groups (10:516).

4-7

Summary

This chapter discussed the detail design decisions based on the conceptual

design and the objectives of the thesis. For the translator, C was chosen because of

portability of the tool and reusability of the Johnson's code. For the syntax checker,

MS-DOS Prolog-1 was chosen because the Xenologic Prolog had many problems.

Thus, the translator was implemented on the bun workstation using C. The syntax

checker was implemented on the Z-248 workstation using Prolog-1. Also, coding

and testing approaches were presented in the last two parts of the chapter. The

next chapter presents the conclusions from conducting this thesis and recommends

several future studies as a result of this effort.

4-8

V. Conclusions and Recommendations

Conclusions

The objective of this thesis effort was to perform the prototype development

of a syntax validation tool for graphical diagrams using SADT methodology.

This effort was performed in three phases. During the first phase, the formal

definition of the SADT methodology was derived with emphasis upon the syntax of

the SA graphical features using Predicate Logic representation. The formal syntax

definition of the SADT methodology derived in this effort was not complete but

consistent because the SA graphical language also includes semantics, as Ross ac-

knowledged (13:28). During the second phase, the SADT Editor was analyzed and

the interface issues with the associated software were identified. Thus, the graphical

items were translated into their predicates. The predicates were derived with em-

phasis upon the box and the arrow relationship of the SADT diagram. During the

third phase, the syntax rules of the SADT methodology were derived using Predicate

Logic representation. The syntax rules were also identified with emphasis upon the

box and the arrow relationships.

The syntax checking process was implemented using a knowledge based system

to ease the extension of the syntax rules, to add knowledge of the SADT semantics,

and to add domain knowledge of the application system developed by the SADT

methodology. Unfortunately, Xenologic Prolog on the Sun workstation was unstable

during the implementation. Thus, the syntax checking part of the SADT Validator

was implemented on the Z-248 workstation using Prolog-1. The translation part was

implemented as an integral part of the SADT Editor on the Sun workstation using

the graphic package SunView and C under Sunwindow environment.

This thesis effort was successfully accomplished and a prototype syntax valida-

tion tool of the SADT methodology was designed and developed. However, several

5-1

aspects of the tool were identified that could be enhanced. These aspects are pre-

sented in the next section.

Recommendations

This section presents recommendations for future studies which could lead to

further improvements in the tool:

1. Extend the formal definition of the SADT syntax. This issue needs to analyze

the SA graphical features in more detail. Currently, the tool has only the

formal definition with emphasis upon the box and the arrow relationships. For

example, the graphical features which present arrow information such as join,

branch, bundle, spread etc. should be identified with formal meanings. Also,

the relationships between parent diagram and child diagram should be defined

to improve the capability of the tool.

2. Add more syntax rules. This issue is dependent upon the extension of the

formal definition of the SADT syntax.

3. Integrate the translation process with the syntax checking process. This issue

nceds to address the stability of the Xenologic Prolog. Also, the Xenologic

Prolog should have an interface with C. Although this interface was referenced

in the Xenologic Prolog manual (22:8- 29), it was inoperative on the Sun work-

station.

4. Apply the knowledge base of the syntax checker to the design knowledge of the

application software system. The design knowledge using the SADT method-

ology can be reused for new software development in a similar design. This

project needs the development of a design schema which represents the knowl-

edge of the software design component. Design schemas provide a means for

abstracting software designs into broadly reusable components that can be

assembled and refined into new software designs. Thus, the system's knowl-

5-2

edge base uses SADT model segments to represent design components. These

segments are combined and refined, using transformation rules, to produce a

SADT model of a design that leads to the goal program. Thus, the system's

knowledge base includes design schemas for SADT model segments and their

domain information. The main application of the design schema is the design

reusability in the software development. The existing software components

could be used for new software design in a similar domain. Thus, the labor

and the time required in the development of a new software could be reduced.

Whenever new software is developed, its design components are stored into

the system's knowledge base using the design schema representation with its

domain information for later use.

Summary

This chapter presented the conclusions drawn from the design and development

of a syntax validation tool. Additionally, the recommendations for further research

were identified.

5-3

Appendix A. Summary of SADT Editor

Introduction

The purpose of this appendix is to summarize the discussion of the SADT

Editor developed by Steven E. Johnson (8). The SADT Editor has been developed

for extending the previous SADT Editor, which had been developed by James W

Urscheler, by providing a more complete set of the SADT graphical features (8) (21).

A discussion of Johnson's SADT Editor is necessary because the SADT Val-

idator should interface with the SADT Editor and use an SADT diagram and its

diagram files produced from the SADT Editor. The SADT Editor allows users to

interactively create and edit structured analysis diagrams. In addition, partial data

dictionary information is automatically generated from graphics information by the

SADT Editor and is supplemented by inputs from the user through the SADT Edi-

tor.

Implemented Graphic Features

Figure A.1 shows the graphic features implemented in the SADT Editor. Col-

umn 1 in the figure presents the line numbers of the whole graphic features developed

by Ross (14:20). Column 2 presents the terms of the graphic features. Column 3

presents the page of the User's Manual Reference in Johnson's thesis. All graphic

features developed by Ross were not implemented due to the time limitation.

Screen Layout

Figure A.2 shows the screen layout used in the SADT Editor. There are

five windows: the Input Window, the Message Window, the Selection Window,

the Diagram Window, and the Data Dictionary Window.

A-1

Ross article User's Manual
line number Term Reference

1 BOX 2-2,3
2 ARROW 2-2,3
3 INPUT 3-26 (FIG)
3 OUTPUT 3-26 (FIG)

4 CONTROL 3-26 (FIG)
5 MECHANISM 3-11
6 ACTIVITY NAME 2-3,4
7 LABEL 2-3,A
12 BRANCH 3-9
13 JOIN 3-9
18 BOUNDARY ARROW 3-17
22 2-WAY ARROW 3-26 (FIG)
24 TUNNEL ARROW 2-3
25 TO/FROM ALL 6-21
27 FOOTNOTE 3-26 (FIG)
29 SQUIGGLE 3-26 (FIG)
30 C-NUMBER 2-3
31 NODE NUMBER 2-3
32 MODEL NAME 3-16
33 ICON CODE 4-8
37 FACING PAGE TEXT 4-1

Figure A.1. Implemented Graphic Syntax (8:A-5)

The Input Wi. dow, which is located at the top of the screen, is used for

displaying the keyboard input. Errors are correctable using the DELETE key on the

keyboard, and input typed is effected by using the RETURN key.

The Message Window, just under the Input Window, is used to help and

respond to user's operations. Thus, the current status of the tool is shown in the

Message Window.

The Selection Window, just under the Message Window, is used to select the

menu which users desire to operate. There are five ovals on the Selection Window:

A-2

RECALL DIAGRAM, EDIT DD, EDIT FPT, MISC FUNCTIONS, and SAVE DI-

AGRAM.

The RECALL DIAGRAM oval is used to read an existing diagram file. The

EDIT DIAGRAM oval is used to create and edit a diagram. The EDIT DD oval is

used to create and edit data dictionary information. The EDIT FPT oval is used for

facing page text of a diagram. The MISC FUNCTIONS oval is used for miscellaneous

functions such as, making a dump file for a diagram, exiting the SADT TOOL, etc..

The SAVE DIAGRAM is used to save graphics files and data dictionary files of the

current diagram.

The Diagram Window, just under the Selection Window, is used to draw all

graphics features, and to display text typed in the Input Window.

The Data Dictionary Window is used to edit the data dictionary information,

which cannot be accessed from its diagram.

Finally, the SADT Editor uses a menu-driven system to provide good user

interface. Figure A.3 shows all the menu selections provided by the SADT Editor

and their hierachical structure. These menu items are selected in the Selection

Window on the screen layout using the mouse button. Detailed description is found

in the User's Manual of Johnson's thesis (8).

Data Structure

There are five structures: the box structure, the line structure, the squiggle

line structure, the header structure, and the footnote structure (8:4-11 - 4-14).

The box structure contains the information about the location, the label, and

the numeric structure type (8:4-11). "All the activity boxes on the diagram are

maintained by using a linked list. Also, each box structure uses a C pointer to point

to activity data dictionary structure (8:4-11)".

A-3

F 'P1=

: DISABLED

'SSAGE: OELCOME E Please make
a selectio ,.

UNhOR: JDATE: IREADER I
PRO.)ECT: IREV: [DATE III

INODE: (TITLE:

M J4ER:

Figure A.2. Screen Layout of SADT Editor

A-4

kat Lim Labl1

got TWNS Label

I =0 LONS I
Norip/elT Limea

EmITomm acttivitye

SELITI Sqactivity =eoect

9081 activity "a

[SIT LineITil

[BI activity Box

EDI Deme Info leit

1LT FootnoteSet-

A" Hede nf ea odoo

sw~le e s-i.
A"E ALL

________________~boom arrow_______ ri~i~

TWW ro
ming.~T ALLeer

I EDT 0UJ Fiur A.3 SAD Edto Menusbel

UVE Fl 1*40-A2so5-

L3

11 2

12
2

Figure A.4. Example Group of Lines (8:4-12)

The line structure contains the information about the location, the label, the

numeric structure type, the ICOM field, aid the TO/FROM ALL field (8:4-11 -

4-12). In addition, "two numbers are defined to identify the graphical entities drawn

on each end of the line (ie. arrowhead, tunnel, dot, turn right, or branch left, etc.).

Finally, the lines are stored in binary trees with the root nodes linked to other root

nodes by C pointers (8:4-12)". For example, Figure A.4 shows three groups of lines

and the corresponding linked list structure is shown in Figure A.5 (6:4-12).

Figure A.5 shows that the tree arrangement is advantageous in depicting how

the line segments actually connect to one another (8:4-12). Also, C supports the

simple recursive functions used for traversing binary trees.

Also, "each line structure uses a C pointer to point to a data dictionary struc-

ture representing a data dictionary for a data element (8:4-13)".

The squiggle line structure contains the information about the location and

the numeric structure type field (8:4-13). Also, "the squiggle lines for a particular

diagram are stored in a singly linked list; therefore, each structure contains a C

pointer to another squiggle line structure (8:4-13 - 4-14)".

A-6

Figure A.5. Resulting Linked List (8:4-13)

The header structure consists of seven fields: AUTHOR, DATE, PROJECT,

REV, NODE, TITLE, and NUMBER (8:4-14 - 4-15).

Finally, the footnote structure contains "all the information needed to draw,

locate and classify a matching pair of footnote labels (8:4-14)". Also, "the footnote

structures for a diagram are stored in a singly linked list; therefore, a C pointer to

another footnote structure is defined (8:4-14)".

Summary

In this appendix, the information needed in the development of the SADT Val-

idator was presented from Johnson's thesis. This information was used throughout

the requirement analysis, the design, and the implementatioD of this thesis effort.

A-7

Appendix B. Requirements Analysis Diagram

AUTHOR: J'9 IDA7E:7-1-fS IREADER I

PROJECT: SA Validator REV: 1. DATE I

user input |Provk id DO definition -.
U g _i go S locin 10am text

TITLE: Provide SA Tool UR: c-1

B-1

THOR: JuyDATE:7-1-0S IREADER I

PROJECT: SA ValI Idator REl : 1.9 [DATE I

warte rface tes(

uTE sPoier Inteaeo :C

Asl

T_-

AUTHOR: af MTE:7-1-4S IREADER I

PRJCT: SA validator RNEV: 1.8 JDATE I

__j_________ Tram-__
predicates

other rules

ODE: TITLE: Translate Diagram R: C-4
All I

AUTHOR: 3- DATE:7-1-80 IREADER I
PROJECT: SA Validetor REV: 1. S DATE I

SA drid r eat

sTLE ruc elt box predi: C-
GoAira

r le

box sructb

AUTHOR: JugILTE:7-l-00 IREADER
POJECT: SA Valldstor IREV:l1.0 JDAE

lin , ru le as

line etruct Get
arrow no"e predicatmes0

Get
arrow od
code

ODE: 717LE: Get arrow R: C-6l
A 1113 I

AUTHOR: Jung IDAE:7-1-Ml IREADER I I
POJECT: SA Vlildetor IR: 1.0 bDATE

line rules

line struct Got___________

lin1Trel.lneitC-
jol rle

Got

AUTHOR: Jug DTE:7-1-S8 IREADER j
PRJCT: SA Validetor RNEV: 1.U JDATE I I

SA sna

predicates Check r osa

ODE: ITLE: CheckSynCheRcC

2o synt ynta

OE TITLE: Check bonat R: C-6
A12 I

AUTHR: J IDAE:71-80IREB-5

WHOR: Jn DA7E:7-1-S8 IREADERI

POJECT: SA Val Idatar IREV: 1.0 DAU E

I ine syntax
'C1 _________

line prod Check 1error messageline nine 0

I ~Check___

TITLE: ~ ~ in chcklneoxC

Check

3

60E TILE: Chuck line featureR. C-i6
A 1223 1-

AU7W: Jug ID7E:71-M R EB-6

Appendix C. Source Code List

Translator

* DATE: 2 July 1988 *
* VERSION: 1.0 *

* NAME: translate.c *
* DESCRIPTION: *
* This file contains the functions needed to translate all *
* graphical features from the SA diagram into their *
* predicates. *

* OPERATING SYSTEM: UNIX *
* LANGUAGE: C *
* CONTENTS: * •

* store.diagramO *
* search-box() *

* init-translate() *
* translate-diagram() *
* check.syntaxC) *
* AUTHOR: Donghak Jung •
* HISTORY: •

#include <stdio.h>
#include <suntool/sunview.h>
#include <suntool/canvas.h>
#include <suntool/panel. h>
#include <suntool/textsw.h>
#include <sys/param.h>
*include "globals. h"

C-I

* DATE: 1 July 1988 *
* VERSION: 1.0 *

* NAME: store-diagramO •
* MODULE NUMBER: •
* DESCRIPTION: *
* This purpose of this module is to store all the predicates*
* of a given diagram into a file. (.pro extension) *
* ALGORITHM: *
* PASSED VARIABLES: fp,bbox *

* RETURNS: •
* GLOBAL VARIABLES USED: header-rootnode,box *
* GLOVAL VARIABLES CHANGED: box *
* FILES READ •
* FILES WRITTEN: file pointer passed to a .pro file *
* HARDWARE INPUT: •
* HARDWARE OUTPUT: •
* MODULES CALLED: itoao,getcurrentICM() •
* CALLING MODULES: search-box() *

* AUTHOR: Donghak Jung •
* HISTORY: ,

void
storediagram(fp ,bbox)

FILE *fp;
struct box.struct *bbox;
{
extern itoao ,get.currentICOMO;
extern struct headerstruct *headerrootnode;
extern struct box-struct *box;
struct text.linestruct *tl;
char buf [DESCRIPTIONLINELENGTH+1];
char start2[20];

/* NAME */

C-2

fprintf(fp,"confirmed([Xs,is,in-datal)\n"

bbox->name-tezt-string);

/* NUMBER */

itoa(bbox->number,buf);

fprintf(fp,"confirmed([snmberis,%s).\n"l,

bbox->nazle-text-string,buf);

box -bbox; /* "box"I needed for get-currentICOo*/

/* INPUTS *

ti - (struct text-.line..struct *)get-current-lCOM(III);

while~ti NULL)

fprintf(fp,"Iconfirmed([%/s,inputiss]) .\n',
bbox->name-text-string,

tl->text line);
ti tl->next;

/* OUTPUTrS

ti = (struct text-line.struct *)get-.currentICOM(IOI);

if (ti = NULL)

fprintf(fp,IeConfirmed([%s,uput~is,
'D-

bbox->name.text.string);

else

while(tl !-NULL)

fprintf(fp,"confirmed(Eys,utputiss]) .\n",
bbox->name text-string,

tl->text line);
t= tl->next;

C-3

/* CONTRO3LS *

ti (struct text-.line.struct *)get.current-ICOM('C3);

if (ti u-NULL)

fprintf(fp,"confirmed(Ys,control-is,' ']).\n]",
bbox->ziame.text-.string);

else

while~tl !- NULL)

fprintf~fp,"confirmed(%scontrolissj) .\n",
bbox->naae. text-string,

ti tl->next;

/* MECHANISMS *

ti (struct text-line-.struct *)get-current-ICOM('IM);

while~tl NULL)

fprintf~fp,"confirmed[%s,mechnismissJ).\n",
bbox->name.text-.string,tl->text-line);

ti tl->next;

retun;

C-4

* DATE: 2 July 1988 *

* VERSIOIN: 1.0 *

* NAME: search.box() *

* MODULE NUMBER: *

* DESCRIPTION: *
* This purpose of this module is to walk through *

* all the activity boxes. *

* ALGORITHM: *

* PASSED VARIABLES: fp *
**

* RETURNS: *

* GLOBAL VARIABLES USED: box-rootnode *
* GLOBAL VARIABLES CHANGED: *

* FILES READ: *

* FILES WRITTEN: *

* HARDWARE INPUT: *
* HARDWARE OUTPUT: *

* MODULES CALLED: store-diagram() *
* CALLING MODULES: init.translation() *

* AUTHOR: Donghak Jung *
* HISTORY: *

int
search-box(fp)

FILE *fp;

{
extern struct box-struct *box.rootnode;
struct box-struct *bbox;

bboxu box.rootnode;

while(bbox !- NULL)

if(bbox->dd !- NULL)

store.diagram(fp ,bbox);

C-5

bbox - bbox->next;

return(YTRUE);

C-6

* DATE: 2 July 1988 *
* VERSION: 1.0 *

* NAME: handle-fileO *

* MODULE NUMBER: *

* DESCRIPTION: *

* The purpose of this module is to maintain a pointer to a *

* file. It may be set and later recalled *

* ALGORITHM: *

* PASSED VARIABLES: fp,command *

* RETURNS: file-pointer *

* GLOBAL VALIABLES USED: *

* GLOBAL VALIABLES CHANGED: *

* FILES READ: *

* FILES WRITTEN: *

* HARDWARE INPUT: *

* HARDWARE OUTPUT: *

* MODULE CALLED: *

* CALLING MODULES: inittranslation() *

* AUTHOR: Donghak Jung *

* HISTORY: *

FILE *
handlefile(fp,command)
FILE *fp;

char command [5];
{
static FILE *file-pointer;

if((strcmp(command, "set"))==0)
{
file-pointer - fp;
}
else if((strcmp(command, "get")) =0)
{

C-7

return(file-.pointer);

return (NULL);

C-8

,,******,,** ********************

* DATE: 2 July 1988 *
* VERSION: 1.0 *

* NAME: inittranslation()
* MODULE NUMBER: *

* DESCRIPTION: *

* The purpose of this module is to get the file name from the*

* in which to save the predicates files. *
* *

* ALGORITHM: *

* PASSED VARIABLES: *

* RETURNS: PANEL-NONE (Sunview variable) *

* GLOBAL VARIABLES USED: *

* GLOBAL VARIABLES CHANGED: *

* FILES READ: *

* FILES WRITTEN: *
* HARDWARE INPUT: *

* HARDWARE OUTPUT: *

* MODULES CALLED: putsessageO,fix-inputo, *

* disable.input-windowo) ,handle_file() ,search-boxo) *

* CALLING MODULES: translate.diagram() *

* AUTHOR: Donghak Jung *

* HISTORY: *

******* **************************

init-translation()

extern put.message(),disable_ input_window();

extern fix-inputo;
char name [FILENAMELENGTH+1) ,name2 [FILENAMELENGTH+5);
FILE *fp,*fopen();

/* get the user input */
strcpy (name, (char *)panel-get-value(input item));
fix_input(name);

C-9

if(strcup(name, ""1)=Q)

piit...essage(1, "OPERATION ABORTED--
NO FILE NAME RECEIVED--Make another selection");

disable-.input-w.indowvO;
return(PANEL..NONE);

strcpy(name2 ,name);
utrcat (name2," .pro");

if((fp - fopen(name2,"w')) NULL)

put...iessage(1,
"Unable to open the predicate file-- ABORT");

disable-.input-.vindovO);

else

disable-input-w.indowo);
handlejfile(fp, "set");

put...esage~l,"Translating k Saving ... 1)
fp - handle-.file~fp,"get");
search-.box(fp);
fclose(fp);
put..message~l,

"Translating k Saving are done... Make another selection")

return(PANEL-.NONE);

c-10

* DATE: 2 July 1988 *

* VERSION: 1.0 *
* $

* NAME: translate-diagraa() *
* MODULE NUMBER: *

* DESCRIPTION: *

* The purpose of this module is to prompt the user an set *
* up the Sunview environment to save the predicates in a *

* file. *

* ALGORITHM: *

* PASSED VARIABLES: *

* RETURNS: *

* GLOBAL VARIABLES USED: *

* GLOBAL VARIABLES CHANGED: *

* FILES READ: *

* FILES WRITTEN: *

* HARDWARE INPUT: *
* HARDWARE OUTPUT: *
* MODULES CALLED: put-messageo,enableinput-windowo, *

* my-window.set(),init.translation() *
* CALLING MODULES: check.syntax() *

* AUTHOR: Donghak Jung *

* HISTORY: *

void
translate.-diagram (win, event, arg)
Window window;

Event *event;
caddr-t arg;
{
extern put-message(), enable.inputwindow() ,my.window.set ()
extern null-proco;

if(event.isup(event)) return;

switch event_id(event)

C-1I

case MS..LEP7:

my..Vindov..uet Cnull-proc);
enable-..input.-window 0;
panel-.set Cinput-.iteu.
PANEL-.VALUE-.STORED-.LENGTH ,FILE.NAII-.LENGTH,
PANEL..NOTIFY-PROC, init..translat ion,
0);
put..uessage(l,"Enter the file name and hit RETURN");
break;

case MS-.RIGHT:

my-..indov..set (null-.pro c);
put.messag(,"PERATION ABORTED -- Make another selection");
break;
I
return;

CG 12

* DATE: 2 July 1988
* VERSION: 1.0

* NAME: check-.syntax()
* MODULE NUMBER:
* DESCRIPTION:
* The purpose of this module is to initialize the user *

* selection for the syntax check of a given SA diagram. *

* ALGORITHM:*
* PASSED VARIABLES:

* GLOBAL VARIABLES USED:
* GLOBAL VARIABLES CHANGED:*
* FILES READ:*
* FILES WRITTEN:*

HARDWARE INPUT:
* HARDWARE OUTPUT:*
* MODULES CALLED: translate-.diagraa()
* CALLING MODULES: make-jaindovs()

* AUTHOR: Donghak Jung*

void
check.,syntaxoC

extern put..messageo),my-.windov.seto;
extern my-mjove-.cursoro;

put-m.essage~l,"CHECK SYNTAX: ILI to check IRI to abort");
my-.move-.cursor CINIT-.LOC.X , INIT_.LOC-.Y);
my..vindow-.set (translate-.diagraa);

return;

C-13

Inference Engine

1* *l

/* DATE: 10 July 1988
l* VERSION: 1.0 "1
1* *I

l* NAME: BC3 "1
**' DESCRIPTION: *l
** The perpose of this module is to provide an inference **
/* engine for the syntax checker. BC3 provides a shell for */
/* backward chaining expert systems.

/, OPERATING SYSTEM: MS-DOS
** LANGUAGE: PROLOG-1 */
1s. CONTENTS: *
1. .

/* AUTHOR: DR. Frank M. Brown
1* HISTORY: */

/***/

BC4 "1
1"r *l

** A shell for backward-chaining expert systems. */

** Each item of knowledge is represented by a triple (i.e., */
/* a three-element list of the form CObject,Attribute,Value. */
/* An associated rule-base supplies the following data:

/* 1. A goals-statement, in the form of a list of triples to */
**rn be solved in sequence. The solved triples are printed */
/* by the shell. */
/* 2. A collection of if-then rules for triples.
/* 3. A collection of facts, i.e., triples asserted as known */

a priori.
/* 4. A collection of 'askable' triples, indicating the forms **
/** of triples whose values may be obtained from the user. **
/* 5. A collection of 'keep' triples, indicating the form of **

the triples not to be erased from working memory at *1
/*. the beginning of a new session.

C-14

I* *I

1* Each item of knowledge stored in working memory is of the

/* form confirmed([Obj,Attr,ValJ) or denied([Obj,Attr,Val]).
/* *

/* To use the system, load BC4, load the appropriate rule-

/* base and type 'start.' Because BC4's operator-defini-

/* tions are used by the rule-bases, BC4 must load first.

/.- OPERATOR DEFINITIONS -------------------
/* *

/* The operators defined below enable the rules in the know-
/* ledge-base to be expressed in a form more readable than
/* the standard (prefix) form.

/. */

/ /---

?- op(250, xfx, :).

?- op(245 , xfx, then).

?- op(240, fx, if).
?- op(235, xfx, derived_from).

?- op(230, xfy, or).
?- op(225, xfy, and).

/ ------------------------- START--------------------------/

/* The procedure 'start' begins by erasing from working mem-
/s ory all 'confirmed' and 'denied' clauses, except those
/* clauses protected by 'keep' from erasure. The list of
/* goal-triples is then read from the rule-base and solved in
/* turn by 'solve'. A trace is maintained of the back-
/* chaining search-tree generated in solving the goals. When
/* the last of the goal-triples is solved, the values of all
/* goals, except those solved by asking the user directly,
/s are displayed; the trace is also displayed, if requested,

/* as a "how" explanation of the solution. 5/
/* */

-- .----------- *

start

C-15

(ask..about..loading...u, I;scrub-.vu) ,uain..start.

scrub-.vu :
CconfirmedCTriple), /* Erase all working-mem- *
not(keep:Triple), /* ory elements not pro- *
retract(confirmed(Triple)) 1* tected by 'keep' state-*/

/* ments in the knowledge-*/

denied(Triple), /* base. *
not (keep: Triple),
retract(denied(Triple)))

fail.
scrub_ :. -

main-.start
retract all(whytrace)), /* Erase the "why" trace. */
goals: Goals, /* Find the goal-triples, *
prefix(GoalsPrefiedgoals), /* prefix each of them */

reverse(Prefixe/egoalsGoal-list), /* with the word 'goal',*
/* & reverse their order. *

solve(Goals,[],Part-.trace), /* Satisfy all -f the 5

!,ni /* als and then put the*/
append(Goallist,PrttraceTrace),

/* list of goals at the 5

/* front of the "how"

askabout-trace(Trace), / trace. Supply a "how"

ask-.about-.saving-v.m. /* explanation on request.*/

main-start :-/ If all triples can't
nip /* be solved, announce .*/
write('I can''t solve this problem.'),nl.

/* -------------------------- SOLVE -------------------------

/ s The predicate 'solve(Goals,TraceNe dtrace) means that /
/r Goals is a list of goals (expressed as triples), and that /

/* Trace and New-.trace are, respectively, the trace-lists be- s
/ s and after solution of the goal at the head of the goal- s/
is list. The procedure 'solve' solves each of the goals in*/
i, turn. The first step in solving a goal is to erase the
// "why" trace and to initialize it with that goal. Thus each /

/ goal is solved with a separate "why" trace. As each rule */

C-16

/* is encountered in descending through the search-tree for a

/* given goal, that rule is added to the front of the "why" */

/* trace.

/*--1

solve(C],Trace,Trace).

solve([GoallOthers],Trace,Newtrace)

retractall(why-trace(_)), /* Initialize the "wny" */

asserta(whytrace([goal:Goall)), /* trace. */

isknown(Goal,Trace,Tracel),

(confirmed(Goal),! /* Write each triple as */
/* it's solved, but don't */

nl,write-triple(Goal),nl), /* write a triple that's */

solve(Others,Tracel,Newvtrace). /* been told explicitly */

/* by the user.

write-triple([Obj,Attr,Val]) "-

writelist([Obj,' ',Attr,' ',Val,'.']).

ask-about-trace(Trace) -

write('Do you wish to see how this answer was arrived at? '),
read(Reply),
(means(Reply,yes), !,
write-trace(Trace)

true).

ask-about-loading-wm
write('Do you wish to load from a working-memory file? '),

read(Reply),nl,

Reply = y,
loadworking-memory.

ask-about-saving-.wm -

write('Do you wish to save working memory in a file? '),

read(Reply),nl,

(Reply = y,

save-working-memory,

true).

C-17

prefix([),().
prefix([Goal IGoals], (goal :Goal IPrefixedGoals])

pref ix (GoalsPrefixedGoals).

/* -------------------- IS-KNOWN ------------------------- */
/* */

/* The 'is-known' procedure maintains a trace of the path of */
/* the solution-tree leading to the triple currently under */
/* consideration. 'is-known(Triple,Trace,Nevtrace)' means */
/* that if reasoning to a certain point has been recorded in */
/* the list 'Trace', then the additional triple 'Triple' is */
/* known via reasoning recorded by the list 'New-trace'.
/* */

/* ---

/* A triple is not known if it has been denied by the user. */

is-known (Triple,TraceTrace) :-
denied(Triple),

fail.

/* The triple [O,A,V] is known if it is a fact in the rule
/* base. If the current trace includes an entry that [O,A,VJ */
/* is a fact, then leave the trace alone; otherwise, augment */

/* the trace with such an entry.

isknown([O,A,V ,Trace,Trace)
member(fact: 0,OA,V],Trace),

is-nown([O,A,V],Trace,[fact:[O,A,V]ITrace)-
fact: [OAV],

/* A triple is known if it has been confirmed by the user. */

is.known(Triple,Trace,Trace) .-
member (was-told:Triple,Trace),

C-18

isknown(Triple,Trace, [was_told:Triple I Trace]) -

confirmed (Triple),

/* A triple [XP,Y] is known if the Prolog goal P(X,Y) suc-
/* ceeds, either because P is a built-in predicate, or because */
/* the rule-base has prolog-code defining P. The triple
/* [2,member,[1,2]], for example, is converted into the goal */
/* member(X,[1,2J), which is then executed by Prolog. To keep */
/* non-Prolog-programmers out of trouble, the triple [X,is,Y] */
/* is trapped so that it will not be executed as an arithmetic */
/* statement. The triple [X,:=,Y] is interpreted as Prolog's */
/* arithmetic or assignment goal, X is Y.

is.l.own([Obj,Attr,Val] ,Trace,Trace) "-
member(solved: [Obj ,Attr,Val] ,Trace),

is-known([Obj ,Attr,Val) ,Trace, [solved: [Obj,Attr,Val] ITrace])
nonvar(Attr), /* To avoid an error-halt.
(
Attr == :=, I,
Obj is Val /* Interpret ':=' as Prolog's 'is'. *

Attr= , I, /* Interpret 'I=' as an exact match. */
Obj Val

not (Attr -- is), /* Interpret everything else, except s/
T .. [Attr,Obj,Val], /* 'is', as a functor on a two-place s/

/* predicate to be solved as a goal. */

/* A triple is known if it is the head of a rule and the con-
/* ditions of the rule are satisfied. We put a rule that we */
/* encounter at the head of the "why" trace, erasing any du- s/
/* plicates of the rule that are already in the "why" trace. s/
/* The "why" trace is maintained in the database, in a clause 5/

/* of the form 'why-trace(<List of goals and rules>)'. This */
/* differs from the "how" trace, which is handed as an argu- s/
/* ment from goal to goal.

C-19

isjcnovn(Tripl.,Trace, [vas-.proved: [TripleRule) ITracel)
member(Rlle: Triple derived-.from Conds,Trace),

is..knon(Trpl,Trcj Rule: Trpl derived-.from Conds ITrclJ)
Rule: if Conds then Trpl,
why-.trace (Why..trace),
remov.(Rule: Trpl derived.from Conds ,Why..trace, Part..hy),
append([Rule: Trpl derived-.from Conds] ,Part..vhy ,Nev..why),
retract (why..trace(_)),
asserta(vhy-.trace(Nev-.vhy)),
is..knon(Conds ,Trc,Trcl),
i.

/* A condition involving "and", "or", or "not" is known if its *
/* parts are known in suitable combinations. *

isjcnown(Tripleel and Triples2 ,Trace,Trace2):-
isjcnovn(Triplesl ,Trace,Tracel),
is..knownCTriples2,Tracel1,Trace2).

is..knon(Tripleat or Triples2,TraceTracel):-
is..knovn(Triplesl ,Trace,Tracel).

is..knon(Tripleal or Triples2 ,Trace,Trace2):-
is-.knon(Triples2,Trace ,Trace2).

is-.knovn(not Triple,Trace, [confirmed-not :Triple ITracel)
not isicnovn(Triple,Trace,Trace1).

/* A triple is known if (a) the rule-base classifies it as
/* "askable" and if (b) the user confirms it. The user may *
/* request a "iuby" explanat ion before responding to the ques- *
/* tion. *

is..known([,AVJTraceTrace)
member(a..told: CO,A,V] Trace),

is-.knon([OA,V] Trace, [vas..told: [O,A,V)IlTrace]):
askable: (0,A,-],

C-20

confirzed(CO,A,VJ).

/*- - - -- - - - -- - -- ASK-.ABOUT - - - - - - - - - - --

ask-.about([Obj ,Attr,Va3)
var(Val),
!, ul,
writelist([Gbj,' ',Attr,'? 'J),nl,

askable: EObj ,Attr ,Legal-valuesh,
vriteC'Legal values: '), write(Legal-.values), nl,

write('> '), read(Reply),

means(fteply,vhy), /* If the user responds *

explain-..hy([Obj,Attr,Val]), /* vith 'why.', give him *
/* an explanation. *

ask..about (Obj ,Attr ,Vail)

atomic (Legalvalues)

member (Reply ,Legalvalues)

assertz(confirmed(EObj ,AttrReply]))

write('Please re-enter your reply.'),nl,
ask-.about([Obj ,Attr,Vall)

ask-.about([Obj ,Attr,Vall)
nl,
writelist((Obj,s ',Attr,'),Val,'? (yes./no./why.)']),

nl,write('> '),read(Reply),

means(Reply,yes),
assertz~confirmedCEObj ,Attr,Val])),

means(Reply,no),
assertz(denied([Obj ,Attr,Val])),

C-21

means(Reply,vhy),
explain..vhy([Obj ,Attr.ValJ),

ask..about C Obj ,Attr ,Va1)

vrite(QPlease re-enter your reply.')..nl,
aslc..about C Obj ,Attr ,Va1)

mens (Reply ,yes) -

member (Reply, Ey,yes]).
meansCReply,no) :

member(Reply, [n,noJ).
means (Reply ,why) :-

inember(Reply, £vhy,v]).

/*------------------------ EXPLAIN-.WHY ------------

explain-..hy(Triple) :-
why..trace (Ihy-.trace),
vrite('Because: ') ,nl,
just ify (Triple 1Why-.trace).

justifyCTriple ,Why..trace) :
member (goal :Goal ,Why..trace),
Triple - Goal,
writelist(['This will satisfy the goal ',Goal]),nl,
ni,

justify(Triple ,Why..trace)-
member(R:Head derived.from Cs,Why..trace),
among(TripleCs),
remove(R:Head derived-from Cs ,Why.trace,New..trace),
writelistCC'I can use ',Triple)),nl,
list.known.triples(Cs),
vritelist([' to help satisfy ',R,': ',Head),nl,nl,
justifyCHead ,Nev..trace).

list-.known-.triples(Cs) -

among(Triple,Cs),

C-22

confirmed (Triple)

fact: Triple

writelist(E' knowing ',Triple)).ul,
fail.

list-nown-.triples..).

among(Triple ,Conditions):-
Triple - Conditions.

among(Triple, First-.triple and Other-.conditions)
Triple - First-.triple.!

among (Triple ,Other-.condit ions).
among(Triple, First-.triple or Other-.conditions)
Triple - First-.triple,'

among(Til,Dther-.condit ions).

/*----------------------- WRITE-.TRACE ------------

vrite-.trace(5):-
nl.

write-.trace((goal :TriplelRest])

vrite('GOAL: '),vrite(Triple) ,nl,
vrite-.trace(Rest).

vrite-trace ((fact :TriplelIRest])

vrite('FACT: '),vrite(Triple) ,nl,
write-.trace(Rest).

write-.trace([solved:TriplelRest])

vrite('SOLVED: ').write(Triple) ,nl,
vrite..trace(Rest).

write-.trace([was-.told:Triple IRest]):-

vrite('TOLD: '),vrite(Triple) ,nl,
writ e.trace (Rest).

write-.trace([confirmed-.not :Triple IRest])

P C-.23

vrite('CONTRADICTED: '),write(Triple) ,nl,
vrite..trace(Rest).

write-.trace(Cvas-.proved: [Triple,Rule) Ifest])

vrite('PROVED: ')vwrite(Triple) ,vrite(' using '),writeCRule) ,nl,

write-.trace([Rule: Triple derived-.from Conditions IRest])

writelist([Rule,b: ',Triple,' Was Derived From'])..nl,
write..condit ions (Conditions),
write-.trace(Rest).

write..trace(EX Rest])-
write(X) ,nl,
write-.trace(Rest).

write-.condit ions C X ,Y,ZI)
tab(8) ,write((X,Y,Z]) ,nl.

write-.conditions(not EX,Y,ZJ)
tab(4),write('NOT '),write([X,Y,Z]),nl.

write-.condition(EXY,Z] and Conditions)
tab(8).vrite(EX.Y,Z)),write(' AND'),nl1,
write..conditions(Conditions).

write-.conditions(not EXY,Z) and Conditions)
tab(4),write('NOT '),writeCEX,Y,Z)),write(' AND'),nl,
write-condit ions (Conditions).

write-.conditions([X,Y,Z] or Conditions)

tab(8),write([X.Y,Z]),write(1 OR'),nl,
write..condit ions (Conditions).

write-.conditions(Conditionsl or Conditions2)
vrite-.conditions(Conditionsl) ,tab(8) ,write(?OR') ,nl,
write-.conditions(Conditions2).

write..conditions(not [XYZI or Conditions)
tab(4),write('NOT ').write([X,Y,Z)),write(' OR'),nl,
write-.condit ions (Conditions).

/*---------------------- FILEI1/0-------------------------

save-..orking-.meinory-
write('Please supply a filename: '),
read(Filename) ,nl,

C-24

toll (Filename),
save-me.,
told.

save.vme
confirmed(Triple),
vriteq~confirmed(Triple)) ,vrite(.') ,nl,
fail.

save-.vme
denied(Triple),
vriteq(denied(Triple)) ,vrite('. '),nl,
fail.

save-.vme.

load...orking-.memory-
vrite('Please supply a filename: '),

read (Filename) ,nl,
retract..all(confirmedC.)),
retract-.all(denied(-j),
see (Filename),
loadfile,
vrite('Contents of working memory:'),nl,nl,
list...orking..memory,
seen.

loadfile
read (Term),
load (Term).

load (end-.of-.file)-

load(Term)
not Term (confirmed,.],
not Term (. denied,.],

write('Not a legal file of working-memory elements... '),nl,nl,
retract.all (confirmed(_)),
retract..all(denied(_)).

load(Term) :
assertz(Term),
loadfile.

list-w.orking-.memory-
conf irued (Triple).
vrite~confirmed(Triple)) ,vriteC' .') ,nl,
fail.

list..working-.memory-
denied (Triple),
vrite(denied(Triple)) ,vrite(' .',l
fail.

list..vorking..uemory.

/-------- --- UTILITY PROCEDURES-----------

writelist (Ml.
writelist([XILI)

vrite(X),
writelist CL).

member(X, [Xl).
member(XC-LI)

inember(X,L).

appendC[] ,LL).
append([XIL],M,[XIN])
append(LM,N).

reverseCMl,U~).
reverseCEXiL] ,M)

reverse(L,N),
append(N, [XJ ,M).

remove(-..,El]).
remove(X,fIXILLM)

remove(X,L,M).
remove(X,EYILLE(YIK])
remove(XL,M).

retract-.all(X)
not not retract(X),
retract-.all(X).

retract-.all(X)

C-26

not not retractC(X Y)
retract-.allCX).

retract-.allC.).

win:-
list ing(confirned),
listing(denied).

reset :
retract-a11(confirmed(-)),
retract..all(deniedCD)).

again :
write('Consulting bc3.pro') ,nl,
reconsult('bc3.pro').

why :
why..trace(Trace),
write-.trace(Trace).

?write('Type ''start.'' to begin.'),nl,nl,

write('Answer all questions using lower case,'),nl,

write('ending with a period.') ,nl.

Knowledge base

/* */

/* DATE: 5 July 1988 "1
1* VERSION: 1.0

/* */

/* DESCRIPTION:
/* This file contains syntax rules for the syntax
/* checker.

I* *l

1* OPERATING SYSTEM: MS-DOS
/* LANGUAGE: PROLOG-1
/* CONTENTS: */

/* AUTHOR: Dong Hak jung "1
/* HISTORY: */

-goal -----

/* These lists of goal present the resulting message. */

goals: [[goal., ' ', Messagel],
[goal_2 ' ', Message2],
(goal_3, ' ', Message3]J.

/* ------- askable ---*/

/* This "askable" statement needs to enter a box name.

askable: [boxname, is, 'type in the box name'].

/* ------- facts ------- 1

]* The facts needs to enter a working memory file. */

/* ------- rules ------

C-28

/* Rules 1 through 4 determine whether a requested

/* box name is contained in the facts data base or not.*/

rulel: if [boxname, is, Box]
and not [Box,is,in.data

then [program, should-be, stopped].

rule2: if [program, should-be, stopped]

then [goal-1, ' ', ': Requested box is not in the

data base.'].

rule3: if [program, should-be, stopped]

then [goal_2, ' ', ': Start again, please !!!'].

rule4: if [program, should-be, stopped]

then [goal_3, -, . ;3.

/* If there is a box and the number of the box is empty, */
then there is no number in the box.

rule5: if [boxname, is, Box]
and [Box, numberis, ' ']

then [goal-l, ' ', 'Error: There is no box number.'].

/* If there is a box and the name of the control is empty, */
then there is no control/name in the box.

rule6: if [boxname, is, Box]
and [Box, control-is, '

then [goal_2, ' ', 'Error: There is no control/name.'].

rule7: if [boxname, is, Box]

C-29

and not [Box, control-.is,'

then Egoal..2, 1 ', 'Control is OK.'].

/* If there is a box and the output of the box is empty, *
1* then there is no output/name. *

rule8: if £boxnane, is ,Box]
and [Box, output-is, 1'1

then [goal-.3, '', 'Error: There is no output/name.'].

rule9: if [boxname, is, Box]
and not [Box, output-.is, ''

then [goal_.3, ' ,'Output is OK.'].

/* If there is a box
1* and the number of the box is less than 1

or the number of the box is greater 6,
1* then the box number is beyond the limit. *

rule1O: if [boxname, is, Box]
and (Box, numberjis, Number]
and not [Number, =-, ')

and [YesNo, within..limit, Number]

then [box..number..is, legitimate, YesNo].

within.limit (YasNo ,Number)-
wlimit(Number,YesNo).
wlimit(N,yes) N > 0, N < 7, !

wlimit(N,no) N =< 0; N > 6.

rulell: if [box.number-is, legitimate, YesNo]
and [YesNo, ~,yes]

then [goal..1, '', 'Box number is OK.']J.

rulel2: if [box-.number-.is, legitimate, YesNo]

C-30

and [YesNo, -,no)

then Igoal.1,' , 'Error: Box number is beyond the

/* --------------- end----------------------------

C-31

Appendix D. User's Guide

Descriptions

The SADT Validator is operated through the use of the SADT Edil

is assumed that user of the tool is familiar with the SADT method and

use. In addition, the user is forced to have knowledge of the UNIX enviro

System Requirements

Workstations: Sun and Z-248.

Software: SunView, Sunwindow environment, C, and Prolog-1 versic

Operation on Sun Workstation

1. Login to the Sun workstation by normal UNIX login procedure.

2. Enter "suntools".

3. Enter "SAtool".

4. Begin by selecting a menu option. Menus are displayed on the screen t

the cursor inside one of the "ovals" above the diagram and clickiri

mouse button. The oval choices are:

* RECALL DGM

* EDIT DGM

* EDIT DD

0 EDIT FPT

* EDIT MISC

* SAVE DGM

* CHECK SYNTAX

D-1

A detailed guide for editing an SADT diagram is available in the user's manual

of Johnson's thesis (8).

5. After drawing ,.- SADT diagram, use the mouse to select "CHECK SYNTAX"

oval to begin checking the SADT syntax of the diagram.

6. Enter the filename in the Input window. Then, <filename>.pro file is created

i" the current directory.

7. Exit the tool by selecting "QUIT" under the "EDIT MISC" oval.

8. From the suntool menu, select "Exit Suntools" by clicking the LEFT mouse

button.

9. Enter "logout".

Operation on Z-248 Workstation

1. Go to a Z-248 workstation connected under AFITNET.

2. Enter "ftp <Sun workstation name>".

3. Login to the Sun workstation by norm.al UNIX login procedures.

4. Enter "get <fileneme>.pro".

5. Enter "bye".

6. Enter "prolog".

7. Enter "consult('bc4').'.

8. Enter "consult('sarule').".

9. Enter "start.". Then, the message "Do you wish to load from working memory

file ? "is displayed.

10. Enter "y.".

1]. Enter "<filename>.pro.".

D-2

12. Enter the box name which you want to check. Then, the resulting messages

of the syntax checking procedure are displayed. In addition, the message "Do

you wish to see how this answer was a rived at ?" is displayed.

13. Enter "y.,, or "n.". If you enter "y.", then the message regarding the answer

derived is displayed. In both cases, the message "Do you wish to save working

memory in a file ?" is displayed.

14. Enter "y." or "n.". If you want to check other boxes of the SADT diagram,

repeat steps 9 through 15.

15. In order to exit, enter "Ctrl C".

Example of Predicate File

This section presents an example of the predicate file translated from an SADT

diagram. Figure D.1 shows an example of the predicate file translated from the

SADT diagram shown in Figure D.2.

D-3

confirmed([boxi,is,in.data)).
confirmed([boil ,nuxnber-.is, 1)).
confirmed([boxI,inputjis,inl)).
confirmed([box,input..is,in2)).
'onfirmed([boxl,output-.is,out2J).
confirmed(Eboxi ,control-.is,conlj).
confirmed(C[box2, is, ini..dat a)).
confirmed([box2,u.&aber.is,2)).
confirmed([box2,input.is,out2)).
confirmed([box2, input.is, in3)).
confirmed([box2,outputjisin2)).
confirmed([box2,output-.is,out3)).
confirmed(box2,output-is ,out4B).

confirmed([box2,control-..s,con2)).
confirmed([boix2,c4,tro1Jis,con3)).
confirmed(Ebox3, 4,s ,in..dataj).
confirmed(Ebox3,fiumber.is,33).
confirmed(Cbox3, input-.is, in4]).
confirmed([box3,output-.is,outS)).
confirmed([box3,output-.is,con3]).
confirmed([box3,control-.is,out4D).

Figure D.1. Example of Predicate File

D-4

AUTHOR: Jung OAE7-1-"8 IREADER I
PROJECT: Example IREv:l._ JDATE _

cornl con2
C1 C2

outn2n

IMI

-~ ~ ~ - - cx

Appendix E. Programmer's Guide

The purpose of this appendix is to specify the procedure for generating the

execution files for the programmers. The tool was implemented in two part, the

translator and the syntax checker. Since the translator was implemented as an

integral part of the .NADT Editor on the Sim workstation, the file of the translator is

contained in the files of the SADT Editor. The code file of the translator was named

in "validator.c". The executable file was generated by using the UNIX "make"

facility. Using this method, changes to the source files are tracked and recompiled as

necessary before linking the files together. Figure E. 1 is a copy of the file "Makeile."

To use this file, the command "make" is typed a', the system prompt, causing any

needed compilations and then linking of this file.

The syntax checker was implemented on the Z-248 workstation. As mentioned

in Chapter IV, the syntax checker was implemented in two sub-components, the

inference engine and the knowledge base. The code file of the inference engine

was named in "bc4.pro" and the code file of the knowledge base was named in

"sarule.pro". The file "sarule.pro" needs a working memory file, which presents
the facts, from user input. The name of the working memory file is created in

"<filename>.pro" by the user input during the execution of the translator. The

execution of the syntax checker is performed in the following steps:

1. A:> prolog

2. ?- consult('bc4').

3. ?- consult('sarule').

4. ?- start.

Under the environment of Prolog-1, all input should be ended with a period.

Detailed operation is presented in Appendix D.

E-1

OBJECTS - main.o datadict..o messages.o boxfunctions.o
headerfunct ions .o editboxfunc .o miscfunctions .0
addline.o fiCures.o *ndfuncs.o find-o morelinefuncs .0
linelabel .o moreddfuncs.c% ddsearch-funcs.o savefuncs .0
fptfuncs .0 sqglefuxics.o fnotefuxics.o moresava.o
screendunp.o readfuncs.o dectalk.o session.o validator.o

HEADERS = globals.h

ALL - sad

CELAGS = -0

LIBS - lsuntool-.P -1sunwindow-.p -1pixrect -1m

sad :$(OBJECTS)
cc W(FLAGS) $(OBJECTS) $(LIBS) -o SAtool

Figure E..Makefile Format

All of code files were stored in the directory "djung/validator" on the Sun

workstation.

&-2

Bibliography

1. Agresti, William W. "The Conventional Software Life- cycle Model: its Evolu-
tion and Assumptions". IEEE Tutorial: New Paradigms for Software Develop-
ment, 1986.

2. Agresti, William W. "What are the New Paradigms ?". IEEE Tutorial: New
Paradigms for Software Development, 1986.

3. Boehm, B. W. "Software Engineering," IEEE Transactions on Computer, Vol
C-25, 12:1226-1241 (December, 1976).

4. Aratko, Ivan. Prolog Programming for Artificial Intelligence. England: Addison-
Wesley Company, 1986.

5. Greenspan, So! J. Requirement Modeling: A Knowledge Representation Ap-
proach to Software Requirement Definition. PhD Thesis, Dept. of Computer
Science, University of Toronto, (1984).

6. Greenspan, Sol J., Borgida, Alexander, and Mylopoulos, John. "A Requirement
Modeling Language and its Logic," Information Systems, Vol 11-1, 9-23, (1986).

7. Fartrum, Thomas C. Software Deve.opment Documentation Guidelines and
Standards (Draft No.Sa). Air Force Institute of Technology Department of En-
gincering, Wright-Patterson AFB, OH, (September 26, 1986).

8. Johnson, Steven E. A Graphics Editor for Structured Analysis with a Data
Dictionary. MS Thesis, School of Engineering, Air Force Institute of Technology
(AU), Wright-Patterson AFB, OH, (December 1987).

9. Lederman, A. An Abstracted Bibliography on Programming Environments. Dep.
Elec. Eng. Comput. Sci., M. I. T., (June 1980).

10. Pressman, Roger S. Software Engineering: A Practitioner's Approach. New
York: McGraw-Hill Book Company, 1986.

11. Rich, Elaine. Artificial Intelligence. McGraw-Hill Book Company, First edition,
1983.

12. Lubars, Mitchell D. and Mehdi T. Harandi. "Knowledge- Based Software Design
Using Design Schemas," Proceedings of the 9'th International Conference on
Software Engineering, Monterey, Cal., 253-262 (March 1987).

13. Ross, Douglas T. "Applications and Extensions of SADT," IEEE Transactions
on Computer, 25-30. (April 1985).

14. Ross, Douglas T. "Structured Analysis (SA): A language for Communicating
Ideas," IEEE Transactions on Software Engineering, SE-3, No. 1:16-34 (January
1977).

BIB-1

15. Ross, Douglas T. and K. E. Schoman. "Structured Analysis for Requirement
Definition," IEEE Transactions on Software Engineering, SE-3, No.1:6-15 (Jan-
uarv. 1977).

16. Softech Inc. An Introduction to SADT Structured Analysis and Design Tech-

nique. Softech Report 9022- 78R, Waitham, MA, 1976.

17. Teichroew, D., and E. A. Hershey. "PSL/PSA: A Computer-Aided Technique for
Structured Documentation and Analysis of Information Processing Systems,"
IEEE Transactions on Software Engineering, SE-3, NO.1:41-48, January, 1977.

18. Teitelbaum, Tim. The Cornell Programming Synthesizer: A Tutorial Introduc-

tion. Cornell Univ. Technical Report TR 79-381, (January 1980).

19. Teitelbaum, Tim and Thomas Reps, The Cornell Programming Synthesizer: A

Syntax-Directed Programming Environment. Cornell Univ. Technical Report TR
80-421, (May 1980).

20. UM 170133010. Interim A UTOIDEF System User's Refercncc Manual. Materi-

als Laboratory, Air Force Wright Aeronautical Laboratories, Air Force Systems
Command, Wright-Patterson AFB OH, 1982.

21. Urscheler James W. Design of a Requirement Analysis Design Tool Integrated

with a Data Dictionary in a Distributed Software Development Environment.

MS Thesis, ,School of Engineering, Air Force Institute of Technology (AU),

Wright-Patterson AFB, OH, (June 1986).

22. Xenologic Inc. Xenologic Prolog User Manual. Newark, CA, 1988.

BIB-2
It

Vita

Major Dong Hak Jung was born o

He graduated from SungDong Mechanical High School in 1976 and attended

R.O.K. Air Force Academy where he received a Bachelor of Engineering degree with

a major in Electrical Engineering in April 1980. He entered active duty in April

1980 and was assigned to R.O.K. Air Force Headquarters in Seoul where served

as Programmar, Central Computer center, until Febuary 1982. He then attended

Seoul National University and received a Bachelor of Science Degree with emphasis

in Computer Science and Statistics in Febuary 1984. Upon graduation, he again

served at the Headqua&rter of the Air Force in Scoul as System Programmer, Cen-

teral Computer center. He entered the school of Engineering, Air Fc':ce Institute 0L

Technology, Wright-Patterson Air Force Base, Ohio, in May 1986.

VITA-I

SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATI)N PAGE I o.0p0r-0e8

la. REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS

Unclassfied
2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABILITY OF REPORT

Approved for public relese
2b. DECLASSIFICATION / DOWNGRADING SCHEDULE Distribution unlimited

4. PERFORMING ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S)

AFIT/GCS/ENG/88S-1

6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZA"ION

6chool of Engineering (if applicable)

6c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)

Air Force Institute of Technology

Wright-Patterson AFB, OH 45433-6583

8a. NAME OF FUNDING/SPONSORING Bb. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (if appllcible)

OSD,'SDIO '.' S/BM8c. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS

PROGRAM PROJECT TASK WORK UNITPentagon ELEMENT NO. NO. NO. ACCESSION NO.Washington, DC 20301-71001
1

17. TITLE (include Sectrity Classification) DESIGN OF A SYNTAX VALIDATION TOOL FOR REQUIREMENTS

ANALYSIS USING STRUCTURED ANALYSIS AND DESIGN TECHNTQUE (SADT)

12. PERSONAL AUTHOR(S)
Dong Hak Jung, Major Republic of Korea Air Force"
13a. TYPE OF REPORT 13b. TIME COVeRED 14. DATE OF REPORT (Year, Month, Day) 15. PAGE COUNT
MS Thesis FROM TO _ 1988, July 1105
16. SUPPLEMENTARY NOTATION

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and Identify by block number)
FIELD GROUP SUB-GROUP Software Engineering, Formalization,

± j j05 Knowledge-Based System, Graphics Tool

19. ABSTRACT (Continue on reverse If necessary and Identify by blco.k number)

This thesis investigation presents the protocype development of a validation tool for
checking the syntax of Structured Analysis and Design Technique (SADT) method.

The tool provides the requirements analyst and the designer with an environment for

checking the SADT syntax of a diagram.

The tool was implemented using a knowledge-based system technique The syntax checking

process permits the extension of the tool to the syntax/semantlcs knowledge representation

of SADT methodology.

20. DISTRIBUTION/ AVAILABILITY FABSTRAIT 21, ABSTRACT SECURITY CLASSIFICATION
r UNC.ASSIFIED/UNLIMITED . SAME AS RPT, - DTIC USERS Un, .1.afio(

22a. I'.ME OF RESFONSIBLE INDIVIDUAL 22b. TELEPHONE (include Are Code) 22c. OFFICE SMBOL
Dr. Gary B. Lamont ,513-256-1.279 . AFlf!ENO

DO Form 1473, JUN 86 Previous edltlongare obsolete, SECURITY CLASIrICATION.OF THIS PAG

t

